Issue 22, 2023

Microfluidic device-fabricated spiky nano-burflower shape gold nanomaterials facilitate large biomolecule delivery into cells using infrared light pulses

Abstract

Photothermal nanoparticle-sensitised photoporation is an emerging approach, which is considered an efficient tool for the intracellular delivery of biomolecules. Nevertheless, using this method to achieve high transfection efficiency generally compromises cell viability and uneven distribution of nanoparticles results in non-uniform delivery. Here, we show that high aspect ratio gold nano-burflowers, synthesised in a microfluidic device, facilitate highly efficient small to very-large cargo delivery uniformly using infrared light pulses without sacrificing cell viability. By precisely controlling the flow rates of shaping reagent and reducing agent, high-density (24 numbers) sharply branched spikes (∼80 nm tip-to-tip length) of higher aspect ratios (∼6.5) with a small core diameter (∼45 nm) were synthesised. As produced gold burflower-shape nanoparticles are biocompatible, colloidally stable (large surface zeta potential value), and uniform in morphology with a higher plasmonic peak (max. 890 nm). Theoretical analysis revealed that spikes on the nanoparticles generate a higher electromagnetic field enhancement upon interaction with light pulses. It induces plasmonic nanobubbles in the vicinity of the cells, followed by pore formation on the membrane leading to diverse biomolecular delivery into cells. Our platform has been successfully implemented for uniform delivery of small to very large biomolecules, including siRNA (20–24 bp), plasmid DNA expressing green fluorescent protein (6.2 kbp), Cas-9 plasmid (9.3 kbp), and β-galactosidase enzyme (465 kDa) into diverse mammalian cells with high transfection efficiency and cell viability. For very large biomolecules such as enzymes, the best results were achieved as ∼100% transfection efficiency and ∼100% cell viability in SiHa cells. Together, our findings demonstrate that the spiky gold nano-burflower shape nanoparticles manufactured in a microfluidic system exhibited excellent plasmonic behaviour and could serve as an effective tool in manipulating cell physiology.

Graphical abstract: Microfluidic device-fabricated spiky nano-burflower shape gold nanomaterials facilitate large biomolecule delivery into cells using infrared light pulses

Supplementary files

Article information

Article type
Paper
Submitted
19 Apr 2023
Accepted
06 Oct 2023
First published
23 Oct 2023

Lab Chip, 2023,23, 4783-4803

Microfluidic device-fabricated spiky nano-burflower shape gold nanomaterials facilitate large biomolecule delivery into cells using infrared light pulses

K. Illath, S. Kar, A. Shinde, R. Ojha, D. R. Iyer, N. R. Mahapatra, M. Nagai and T. S. Santra, Lab Chip, 2023, 23, 4783 DOI: 10.1039/D3LC00341H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements