From lithium to emerging mono- and multivalent-cation-based rechargeable batteries: non-aqueous organic electrolyte and interphase perspectives
Abstract
Since the oil crisis in the 1970s, the importance of rechargeable batteries has been noted by both academia and industry. This has become more prominent with the increasing demand in e-mobility and integration of renewable sources in the energy ecosystem. However, despite the great success of lithium-ion batteries in portable consumer electronics and the above-mentioned domains, it is challenging to further expand their use to large-volume technical applications due to the limited resources of some key elements (lithium, cobalt, etc.). Accordingly, emerging mono-valent (e.g., sodium and potassium) and multi-valent (magnesium, calcium, zinc, aluminum, etc.) batteries are expected to overcome the resource limitation and related challenges. Herein, we present the historical development of non-aqueous organic electrolytes and electrode–electrolyte interphases and focus on the similarities and differences between lithium-based batteries and other complementary emerging battery technologies. Special attention is paid to some basic parameters related to solvents and salts, including donor numbers and Eigen values, to better understand the transport behavior in the bulk electrolyte. Moreover, key parameters impacting the features of the electrode–electrolyte interphase are critically analyzed for each battery configuration. Additionally, we discuss the possible strategies to enhance the physical (e.g., transport behavior and mechanical properties) and (electro)chemical properties of electrolytes and interphases, aiming at promoting the development of sustainable and high-performance mono- and multi-valent batteries for practical applications. Particularly, it is scrutinized whether the accumulated facts with respect to lithium can be smoothly transferred to other emerging battery systems or not.