A room-temperature gas sensor based on 2D Ni–Co–Zn ternary oxide nanoflakes for selective and sensitive ammonia detection†
Abstract
While most of the reports on NH3 gas sensors are either based on metal oxide composites with other 2D materials, polymers or noble metals or involve multi-step-based synthesis routes, this work is the first report on a pristine ternary metal oxide, 2D NiCo2ZnO4 nanoflake based room-temperature (RT) NH3 gas sensor. The 2D NiCo2ZnO4 nanoflakes were prepared by a one-step hydrothermal method. FESEM and TEM images displayed micro-flower like morphologies, containing vertically aligned interwoven porous 2D nanoflakes, whereas XPS and XRD data confirmed the successful growth of this ternary metal–oxide. This sensor revealed a good response, repeatability, linearity (R2 = 0.9976), a low detection limit of 3.024 ppb, and a response time of 74.84 s with excellent selectivity towards NH3 over six other VOCs. This improved performance of the sensor is ascribed to its large specific surface area (127.647 m2 g−1) resulting from the 2D nanoflake like structure, good electronic conductivity, variable valence states and abundant surface-active oxygen of NiCo2ZnO4. Thus, this highly selective 2D NiCo2ZnO4 based RT NH3 gas sensor can be an attractive solution for the fabrication of next-generation NH3 gas sensors.