Issue 35, 2023

An efficient LiSrGaF6:Cr3+ fluoride phosphor with broadband NIR emission towards sunlight-like full-spectrum lighting

Abstract

Sunlight-like full-spectrum phosphor-converted light-emitting diodes (pc-LEDs) require near-infrared (NIR) emission bands to fill the spectrum gap and consequently propel their widespread applications. Although fluoride NIR phosphors have been increasingly investigated, balancing high quantum efficiency (QE), high thermal stability, and wideband NIR emission to obtain excellent overall performance in a single system is still a challenge for Cr3+-doped fluoride NIR phosphor and is significant for direct utilization. Herein, a high-efficiency and thermally stable broadband NIR emission was realized in a novel LiSrGaF6:Cr3+ fluoride phosphor benefitting from a relatively weak crystal field and electron–phonon coupling effect. Upon blue light excitation, the ultra-broad NIR luminescence ranging from 650 to 1150 nm can be achieved with an FWHM of 149 nm peaking at ∼813 nm. Furthermore, this system possesses a high QE of up to 76.88% and its emission intensity at 423 K still maintains 61.62% of its initial intensity at room temperature. An NIR output power of 42.82 mW and photoelectric conversion efficiency of 14.27% of NIR pc-LED devices have also been presented based on this NIR phosphor, demonstrating its possible application in compact nonvisible light sources. In addition, a highly continuous sunlight-like vis-NIR pc-LED was further constructed by employing a blue chip with commercial cyan (BaSi2O2N2:Eu2+), yellow (Y3Al5O12:Ce3+), red (CaAlSiN3:Eu2+), and this LiSrGaF6:Cr3+ NIR phosphor. The as-obtained pc-LED exhibits an ultra-broad spectrum ranging from 400 nm to 1000 nm, exhibiting a higher color reproduction with a color rendering index (CRI) of 95.1 and luminous efficiency (LE) of 50.22 lm W−1. These results indicate that LiSrGaF6:Cr3+ phosphor can be a promising NIR phosphor candidate for high-quality sunlight-like full-spectrum lighting and infrared night vision technology.

Graphical abstract: An efficient LiSrGaF6:Cr3+ fluoride phosphor with broadband NIR emission towards sunlight-like full-spectrum lighting

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2023
Accepted
07 Aug 2023
First published
09 Aug 2023

Dalton Trans., 2023,52, 12526-12533

An efficient LiSrGaF6:Cr3+ fluoride phosphor with broadband NIR emission towards sunlight-like full-spectrum lighting

D. Wu, Y. Li, Y. Liao, X. Pan, S. Liu, W. Zou, J. Peng and X. Ye, Dalton Trans., 2023, 52, 12526 DOI: 10.1039/D3DT01996A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements