Self-standing 2D/2D Co3O4@FeOOH nanosheet arrays as promising catalysts for the oxygen evolution reaction†
Abstract
The rational design of a highly efficient oxygen evolution reaction (OER) is crucial for the practical applications of water electrolysis. Herein, a hybrid Co3O4@FeOOH/NF electrode was fabricated by loading FeOOH sheets on the surface of Co3O4 nanosheet arrays via a newly developed chemical deposition protocol. The decoration of FeOOH on Co3O4 nanosheet arrays not only endows a strong electronic interaction between the two components but also offers sufficient active sites for the OER process. Benefitting from these advantages, Co3O4@FeOOH/NF exhibited outstanding OER activity in terms of a low overpotential of 209 mV at 10 mA cm−2 and a low Tafel slope of 48.9 mV dec−1. Moreover, nearly steady state operation current and negligible change in the phase and morphology of the catalyst also indicate remarkable stability. This work may provide an important guide for the design of high-performance electrocatalysts for energy conversion applications.