Issue 15, 2023

Synthesis and the photophysical and biological properties of tricarbonyl Re(i) diimine complexes bound to thiotetrazolato ligands

Abstract

Twelve Re(I) tricarbonyl diimine (2,2′-bipyridine and 1,10-phenanthroline) complexes with thiotetrazolato ligands have been synthesised and fully characterised. Structural characterisation revealed the capacity of the tetrazolato ligand to bind to the Re(I) centre through either the S atom or the N atom with crystallography revealing most complexes being bound to the N atom. However, an example where the Re(I) centre is linked via the S atom has been identified. In solution, the complexes exist as an equilibrating mixture of linkage isomers, as suggested by comparison of their NMR spectra at room temperature and 373 K, as well as 2D exchange spectroscopy. The complexes are photoluminescent in fluid solution at room temperature, with emission either at 625 or 640 nm from the metal-to-ligand charge transfer excited states of triplet multiplicity, which seems to be exclusively dependent on the nature of the diimine ligand. The oxygen-sensitive excited state lifetime decay ranges between 12.5 and 27.5 ns for the complexes bound to 2,2′-bipyrdine, or between 130.6 and 155.2 ns for those bound to 1.10-phenanthroline. Quantum yields were measured within 0.4 and 1.5%. The complexes were incubated with human lung (A549), brain (T98g), and breast (MDA-MB-231) cancer cells, as well as with normal human skin fibroblasts (HFF-1), revealing low to moderate cytotoxicity, which for some compounds exceeded that of a standard anti-cancer drug, cisplatin. Low cytotoxicity combined with significant cellular uptake and photoluminescence properties provides potential for their use as cellular imaging agents. Furthermore, the complexes were assessed in disc diffusion and broth microdilution assays against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa) bacterial strains, which revealed negligible antibacterial activity in the dark or after irradiation.

Graphical abstract: Synthesis and the photophysical and biological properties of tricarbonyl Re(i) diimine complexes bound to thiotetrazolato ligands

Supplementary files

Article information

Article type
Paper
Submitted
07 Oct 2022
Accepted
27 Feb 2023
First published
01 Mar 2023

Dalton Trans., 2023,52, 4835-4848

Synthesis and the photophysical and biological properties of tricarbonyl Re(I) diimine complexes bound to thiotetrazolato ligands

L. J. Stephens, E. Dallerba, J. T. A. Kelderman, A. Levina, M. V. Werrett, P. A. Lay, M. Massi and P. C. Andrews, Dalton Trans., 2023, 52, 4835 DOI: 10.1039/D2DT03237F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements