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e patterns that neural networks
learn from chemical spectra†

Laura Hannemose Rieger, a Max Wilson,b Tejs Vegge a and Eibar Flores *c

Analysing spectra from experimental characterization of materials is time consuming, susceptible to

distortions in data, requires specific domain knowledge, and may be susceptible to biases in general

heuristics under human analysis. Recent work has shown the potential of using neural networks to solve

this task, and assist spectral interpretation with automated and unbiased analysis on-the-fly. However,

the black-box nature of most neural networks poses challenges when interpreting which patterns from

the data are being used to make predictions. Understanding how neural networks learn is critical to

assess their accuracy on unseen data, justify critical decision-making based on predictions, and

potentially unravel meaningful scientific insights. We present a 1D neural network to classify infrared

spectra from small organic molecules according to their functional groups. Our model is within range of

state-of-the-art performance while being significantly less complex than previously used networks

reported in the literature. A smaller network reduces the risk of overfitting and enables exploring what

the model has learned about the patterns in the spectra that relate to molecular structure and

composition. With a novel two-step approach for explaining the neural network's classification process,

our findings not only demonstrate that the model learns the characteristic group frequencies of

functional groups, but also suggest it uses non-intuitive patterns such as tails and overtones when

classifying spectra.
1 Introduction

Spectroscopic techniques are one of the main tools in the
scientic arsenal to characterize materials. They are routinely
used to control the quality of drugs and nd new ones, monitor
the operation of industrial processes, investigate the properties
and function of promising materials, etc.1 As radiation interacts
with a material it excites the nuclei (e.g., nuclear magnetic
resonance), core electrons (e.g., X-ray absorption spectroscopy),
valence electrons (e.g., UV-Vis spectroscopy), or interatomic
bonds (e.g., Raman spectroscopy). Spectroscopists then analyze
the result of this interaction, which can occur via energy
absorption, scattering, re-emission and/or resonance. The
results are patterns of intensity vs. excitation energy, which are
characteristic and descriptive ngerprints of the state of matter.
Researchers use these patterns to infer properties such as
phase, chemical composition and environment, purity, defects,
stress/strain, etc. from the object of interest.2–4
rage, Technical University of Denmark,
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the Royal Society of Chemistry
Virtually all spectra share the same data structure: an array of
intensity counts (e.g., photons, electrons), and its correspond-
ing array of indexes, i.e., the scanning variable such as
absorption energy, scattering angle, or wavelength. Spectro-
scopic data differ from other more traditional data sources by
Fig. 1 An example spectrum illustrating meaningful patterns such as
data points belonging to the same peak (local patterns) and peaks
belonging to the same compound (non-local patterns). Spectra are
typically distorted by artifacts such as noise, outliers and a drifting
baseline.
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being high-dimensional (each spectrum typically has hundred/
thousand data points) and exhibiting both local (peaks and
troughs) and non-local patterns (multiple peak belonging to the
same compound or chemical environment), as shown in Fig. 1.
Both types of patterns are needed to map a spectrum to
a sample's properties.

Traditionally, spectral analysis involves comparing peaks
and patterns to experimental databases,5 to simulations,6 or by
visual inspection following heuristic rules.7 These methods can
be time consuming, require specic domain knowledge, and
are susceptible to spectral artifacts (Fig. 1) from, e.g., noise,
outliers and baseline dri. Multiple correction algorithms have
been proposed for spectral analysis.8,9 However, these tradi-
tional preprocessing techniques involve manual tuning of
parameters and so are also susceptible to human biases. More
importantly, even if the spectra can be successfully pre-
processed, it is still highly challenging to establish spectrum–

property relationships in the absence of accurate simulations
and reference compounds. In the hope of addressing some of
these issues, machine learning (ML) methods have been
applied to the problem of spectra analysis. These algorithms
can learn to directly map spectral patterns to material proper-
ties from a preexisting dataset.10–12 ML methods establish
a statistical model between a large number of spectra and
a property of interest, and potentially bypass the need for
physics-based simulations and curated databases. Classica-
tion algorithms learn to assign spectra to one of several classes
(e.g., species of bacteria13), while regression algorithms map
spectra to a numerical property (e.g., the concentration of
a specic chemical or compound within a mixture14). They can
be susceptible, in the same way, to distortions or biases in the
dataset. Addressing these artifacts manually becomes intrac-
table given the large number of spectra needed to train an ML
algorithm; instead, artifacts are mitigated in a high-throughput
fashion with a variety of preprocessing routines, such as noise
reduction15 and baseline correction.16–18

Convolutional neural networks (CNN) are a well-established
type of neural network for recognizing patterns in images.19,20

CNNs can overcome the need of hand-engineering the data
before training, since they learn low-dimensional patterns
directly from the high-dimensional input. The low dimensional
patterns are hierarchically combined into increasingly complex
patterns. For instance, segments are combined into lines, and
subsequently combined into shapes. In images, the shapes
could be tails, ears and eyes to classify images of cats from dogs,
or circles, arcs and triangles to classify images of hand-written
digits.21–23 The hierarchical pattern recognition approach that
CNNs leverage to classify images shows clear similarities to how
experts infer properties from spectra. Spectroscopists typically
search for lines that form baselines and peaks, in turn peaks
that become shoulders, doublets, sextets, etc.; all while noting
the position of these patterns within an energy axis. Naturally,
such expert-based analysis is very time consuming, and
constitutes a bottleneck in the data analysis from new high-
throughput spectroscopic analysis techniques. It is no
surprise that CNNs have been increasingly applied to the
1958 | Digital Discovery, 2023, 2, 1957–1968
problem of spectra analysis24–30 and shown to perform
comparatively better than other ML methods.31–36

CNNs share with other neural network methods a critical
disadvantage: they are difficult to interpret. Given the dense
connectedness of the network architecture, it becomes
increasingly challenging to investigate the relations between
inputs and outputs that lead to successful predictions. Under-
standing how the network learns is equally important as its
accuracy, for three main reasons. One is assessing how well the
network performs on unseen data. As with any ML model, the
predictive power of a CNN might suffer when the input data is
signicantly different from the data used for training. CNN
models might confuse spurious spectral artifacts for meaning-
ful patterns. Therefore, ensuring that the model is learning
patterns that carry physical information provides further guar-
antee on its ability to generalize. Secondly, interpretability
enables delivering meaningful scientic outcomes. Using NNs
for scientic discovery requires understanding how the learned
patterns build upon existing scientic principles.37 The third
reason pertains to justifying critical decision-making. When
a network predicts an outcome that calls for a crucial decision,
e.g., analysis and medical diagnosis of cancer specimens using
spectroscopic imaging,38,39 data scientists must provide a satis-
factory interpretation to justify a course of action. These inter-
pretations have previously unraveled unexpected and
undesirable behavior of deep learning models. For instance,
models can choose shortcuts to make predictions, e.g. hospital
metadata markers in lung X-ray images instead of using lung
features to detect COVID-19.40,41

In this study, we use a convolutional neural network (CNN)
to classify spectra, with a focus on interpreting the type patterns
the network learns for making predictions. We use an openly
available dataset of infrared spectra from small molecules and
build a small CNN to classify the presence or absence of func-
tional groups from spectra. Our CNN accuracy is within the
range of the state-of-the-art while being comparatively less
complex as measured by the number of parameters. Being
smaller, our model is easier to interpret and more robust
against overtting. It is widely accepted in machine learning
research that while simple models are not immune to over-
tting, complex models are more prone to overt the training
data.42

This work builds upon previous research by Judge et al.,43

who used sensitivity factors computed from a trained multi-
layered perceptron (MLP) to model the relation between
a spectrum and the presence of a functional group. These
sensitivity factors, interpreted as saliency proles, highlighted
regions of the spectra that were most relevant for predicting the
presence of a functional group.43 Fine et al.44 implemented an
autoencoder network followed by several fully connected layers,
and used guided backpropagation to identify the regions of the
spectra used to make classication of each functional group.45

Enders et al.46 used a 2D CNN to classify images of infrared and
mass spectra, without assessing which patterns result in more
condent predictions. Instead, in our work we focus not only on
predictive performance but also the robustness of the predic-
tion along with the interpretability. Similar to the concept
© 2023 The Author(s). Published by the Royal Society of Chemistry
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‡ The code to further inspect the architecture and reproduce the results is
available at https://github.com/laura-rieger/SpectraML-Classication.
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bottleneckmodels introduced in Koh et al.,47 ourmodel features
a ‘bottleneck’ where human understandable features are con-
verted into the nal output classication. In contrast to their
work, our model does not require the relevant features to be
known beforehand or for all training inputs to be annotated
with all features, since concept or prototype features are learnt
automatically in our model. In this way the model might
autonomously discover important features as these do not need
to be known beforehand. Our approach of designing an inher-
ently interpretable model by a bottleneck through which
information must ow circumvents the known problems with
the reliability of post-hoc attribution methods.48,49 To our
knowledge this presents a novel method to explain the classi-
cations of convolutional neural networks.

We implemented a simple 1-D CNN50 with convolutional
layers followed by a single fully connected layer. Our contribu-
tion here is two-fold. Our stripped-down CNN architecture
predicts functional groups with state-of-the-art performance.
Due to the small architecture, we can further examine what
features were relevant for the prediction. We show that patterns
learnt by our model are aligned with the patterns experts use to
assign spectra by visual inspection. In addition, we demonstrate
that our approach uncovers new and non-intuitive patterns
learnt by the neural network.

2 Methods
2.1 Data

We used the infrared spectra of small organic compounds from
the Standard Reference Database Number 69, curated by the
National Institute of Standards and Technology (NIST).51 The
spectra were scraped from the web via the NIST API as in ref. 46.
A total of 14 346 infrared spectra were available in the database;
see ESI Fig. S1 and S2† for statistics on molecular size and
composition. This initial pool was reduced to 8125 aer
preserving only gas-phase spectra and ltering out samples
without a corresponding InChI (International Chemical Iden-
tier) string. The spectra were preprocessed using simple
transformations using an automated workow procedure. First,
we transformed all counts into absorbance units and all indexes
into cm−1 units. Second, since the spectra differed in the range
of wave numbers and sampling intervals, we applied a one-
dimensional linear interpolation to transform every spectrum
into a common x-axis of wave numbers, set between 400 and
4000 cm−1 and uniformly spaced at intervals of 4.2 cm−1. Third,
we padded spectra narrower than the 400–4000 cm−1 range with
zeros.

To obtain the target functional groups, we decoded the
presence of functional groups from the InChI strings using
a structural matching algorithm, feed with the substructural
patterns expressed in SMILES arbitrary target specication
syntax (SMARTS).52 Each functional group is encoded as
a SMARTS pattern (see ESI Table S1†), which is used to search
whether an InChI string encodes or not a particular functional
group. Hence, for each InChI string we searched for 17 different
SMARTS patterns, and encoded the results as a 17-element
vector of “1”/“0”, representing the presence/absence of
© 2023 The Author(s). Published by the Royal Society of Chemistry
functional group in the InChI string. The algorithm matches
a single molecule with multiple functional groups if they are
present in the molecule; see the example of ethanol in Fig. S3.†
This curated data pool was subsequently split randomly into
5687 (70%), 1218 (15%) and 1220 (15%) samples used for
training, validation and testing, respectively. Data are then
shuffled and randomly distributed to training, validation and
test set. Spectra are normalised relative to their own maxima to
be between 0 and 1.
2.2 Algorithm

The purpose of this method is to predict the presence of func-
tional groups (a discrete classication problem) given a spec-
trum. Each spectrum can potentially contain multiple
functional groups, and we represent the predictions as a binary
vector: y ˛ {0,1}.17

For an extensive explanation of CNNs and common practices
we refer to Goodfellow et al.53 Our model can conceptually be
described as a feature extractor followed by a classier, as
shown in Fig. 2. The feature extractor consists of several 1-D
convolutional layers that capture local and global patterns in
a spectrum. Early convolutional layers learn simple patterns
that are combined to recognise complex patterns in the subse-
quent layers. We use an architecture composed of convolutional
layers with ReLU non-linearities and batch normalization54

interspersed with MaxPooling operations.21 The feature
extractor outputs a latent matrix, i.e. a condensed representa-
tion of a spectrum, as learned during the training process. Each
row in the matrix, a channel, models a specic spectral pattern
(e.g. a peak). Each column in the matrix, a feature vector, attends
to a specic spectral region; such region is called a receptive
eld. Stacking convolutional lters and MaxPool layers
sequentially, effectively expands the size of the receptive eld
that each feature vector receives input from. The latent matrix is
then attened into a 1D vector by a Flatten layer and then fed to
a classier. The classier consists of a single fully connected
layer with sigmoid activation, which maps the attened latent
matrix into a format suitable to classify the presence of func-
tional groups. The architecture of the CNN can be summarized
in the following notation‡:

Conv(1, 4, 3, 1), ReLU, BatchNorm, Conv(4, 4, 3, 1), ReLU,
BatchNorm, MaxPool(2),Conv(4, 8, 3, 1), ReLU, BatchNorm,
Conv(8, 8, 3, 1), ReLU, MaxPool(2), BatchNorm, Flatten,
Dense(1672, 17).

For the convolutional layers Conv(i, o, k, s), i, o, k, s, represent
the number of input channels, output channels, kernel size and
stride, respectively. For the MaxPool layers the numbers indi-
cate the kernel size and stride. For the dense layer the rst and
second number indicate the number of inputs and outputs
respectively. Zero padding is used for all layer types if it is
applicable. The number of outputs of the dense layer is dened
by the number of functional groups to be classied. The
number of inputs to the dense layer is given by the number of
Digital Discovery, 2023, 2, 1957–1968 | 1959
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Fig. 2 Representation of the CNN, highlighting the terminology used throughout the manuscript. The network takes as input a 850-element
vector (the spectrum). The feature extractor part of the network learns increasingly complex patterns in the input by sequentially stacking several
convolutional layers. Operating the convolutional layers over the input results in a latent matrix, i.e. a condensed representation of the input as
learned by the feature extractor. The latent matrix has the shape (8 channels× 209 features) and holds information about the shape and location
of spectral patterns that are key for prediction. Each row of the latent matrix is a 209-element vector, called a channel, and focuses on learning
a specific pattern in the spectrum (e.g., peaks, shoulders and their combinations, etc.). Each column in the latent matrix – a feature vector –
encodes learned patterns from a particular region in the spectrum. These regions are called receptive fields. The latent matrix is subsequently
taken as an input of a dense (i.e. fully connected) layer of shape (8 channels, 209 features, 17 functional groups), which stores the set of optimal
weights that predict the presence/absence of each of the 17 functional groups. The output is a 17-element vector, each element holding a value
representing how likely is the functional group to be absent (0) or present (1) in the sample. A detailed description of the model is given in Section
2.2.
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channels, 8, times the length of the convolutional output, 209.
Each receptive eld is 16-elements wide with a stride of 4
elements, such that two adjacent inputs have an overlap of 12
elements. For a detailed explanation on how to compute the size
of the receptive eld for convolutional neural networks we refer
to Araujo et al.55

Training the CNN involves updating its weights to improve
its accuracy at detecting the presence of functional groups in
the spectrum. In such a training scheme, gradients are
computed for a batch at each update step by back-propagating
the sum of the derivatives of the binary cross-entropy loss
function as in eqn (1), applied to the value of the functional
group prediction node yi for functional group index i, in a way
equivalent to logistic regression. The loss is computed using the
binary cross-entropy function:

L ¼ � 1

N

1

M

XN

i¼1

XM

j¼1

ŷi;j log
�
yi;j

�þ �
1� ŷi;j

�
log

�
1� yi;j

�
(1)

where N is the total number of samples, M is the number of
functional groups, ŷi,j is the true label indicating whether the
1960 | Digital Discovery, 2023, 2, 1957–1968
functional group j is present in sample i and yi,j is the predicted
probability of sample i belonging to class j.

Some functional groups are only rarely present in the data-
set, e.g., only 1.1% of the spectra originate from amide-
containing molecules. As a result, the loss from the classes
should be balanced during training such that their weights
receive equal update signals from spectra with and without the
functional group, i.e. spectra from the rarer group should be
weighted more heavily. The proportion pj of class j is

pj ¼ 1
N

XN

i¼1
½yi;j ¼¼ 1� where N is the size of the training set,

and yi,j is the class label for class j of sample i. We rebalance the
loss resulting between labels indicating present/not present for
the functional groups by introducing a loss reweighting factor
that will reduce the loss impact of overrepresented functional
groups. Overall, the loss reweighting factor becomes

wi;j ¼
pj �

�
1� yi;j

�þ �
1� pj

�� yi;j�
1� pj

�� pj
(2)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Accuracy, recall, precision, F-1, and AUC values computed for the individual functional groups sorted by proportion. Color map ranges
from light yellow (closer to 1) to dark purple (closer to 0). The value in parentheses represents the standard deviation across ten different random
initializations of the CNN, expressed with the precision of the last significant digit
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for class j for sample yi. This accounts for the different
proportion of positive labels for individual functional groups,
while ensuring that the loss for all functional groups is
weighted the same. With this, the loss function becomes

L ¼ � 1

N

XN

i¼1

XM

j¼1

wi;j �
�
ŷi;j log

�
yi;j

��þ wi;j

���
1� ŷi;j

�
log

�
1� yi;j

��
(3)

The model training was stopped aer the validation loss had
not improved for ve concurrent epochs. Gradient updates were
computed with the Adam optimization algorithm.56

2.3 Performance metrics

The loss is the quantity minimised during training of the neural
network. However, understanding how this value relates to the
success of the classication task can be challenging. It is
therefore useful to compute and assess additional and more
intuitive performance metrics. The accuracy is the proportion of
correct predictions made

a ¼ ncorrect

ntotal
(4)

where ncorrect is the number of correct predictions made and
ntotal is the total number of predictions.

If the dataset is imbalanced, the overall accuracy may not
give a complete description of the model performance. The
model might perform well for some functional groups and
poorly for others, as seen in Table 1. Computing additional
metrics provides additional context on the way the model is
performing. Precision quanties the proportion of positive
predictions made that were correct:

Precision ¼ nTP

nTP þ nFP
(5)
© 2023 The Author(s). Published by the Royal Society of Chemistry
Recall quanties the proportion of positive labels that were
correctly predicted,

Recall ¼ nTP

nTP þ nFN
(6)

The F-1 score is the harmonic mean of the precision and
recall,

F -1 ¼ 2� Precision�Recall

PrecisionþRecall
(7)

The AUC (area under the curve) is calculated as the area
under the ROC (receiver operating characteristic) curve. The
ROC curve is plotted as the rate of true positives over the rate of
false positives when varying the classication threshold from
0 to 1. A model predicting the wrong result every time will get an
AUC score of 0, a model predicting the right result every time
will get an AUC score of 1. The AUC score is oen used to
indicate performance for imbalanced datasets as it is not
dependent on the balance between the two classes.
2.4 A novel approach to explainability

In this section we outline how relevant insights about the
classication are extracted from the neural network. Our
approach to explainability is two-fold. We rst identify the
spectral patterns learnt by the network, i.e. peaks, shoulders,
etc. Second, we inspect how relevant these patterns are to the
classication of the individual functional groups. To the best of
our knowledge, the proposed two-step approach represents
a novel method to explain the inner workings of a CNN.

2.4.1 Visualizing the most activating spectral patterns. As
described in Section 2.2, the network is composed of multiple 1-
D convolutional layers followed by a nal fully connected layer
feeding into the classication. Once trained, the parameters of
Digital Discovery, 2023, 2, 1957–1968 | 1961
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Fig. 3 Fragments of spectra that activate the network themost. During prediction, the network assigns high activation in the latentmatrix when it
recognizes these patterns over a spectrum. To extract the patterns, we run all samples in the test set through the trained network, and find the
highest values in the latent matrix. For each of the highest 100 values, we examine the corresponding receptive field, and plot the spectrum
within that field. The top row overlaps all 100 patterns for each of the 8 channels. The following 5 rows plot some individual examples, chosen at
random from the 100 highest activating patterns. Each sample in each column has the size of the receptive field of each dense layer input,
67 cm−1.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
24

 1
0:

52
:3

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
the convolutional layers are optimized to extract and predict the
presence of relevant patterns in the spectra, such as sloping
lines, peaks, peak shoulders, etc., as shown in Fig. 3. These
patterns are learnt independent of their position in a spectrum
since the convolutional lter is applied as a sliding window over
the entire input.

To identify which patterns are typical and indicative for
functional groups, we examine representative examples of those
patterns from the dataset. For each channel, typical examples
are subsets of a spectrum that maximize the corresponding
feature variable in that channel. To identify those, we rst
extract the output of the nal convolutional layer for the entire
test set, resulting in a matrix with the shape [nSamples, nChannels,
nFeatures] with nFeatures being the number of positional outputs of
the last convolutional layer, i.e. the size of a channel vector.

In the rst step, we identify for each channel the 100 input
samples with the highest output feature variables for this
channel in the test set.§ The receptive elds causing the highest
activation are linked to the feature variable activations by the
structure of the neural network. We identify the most important
patterns in the receptive elds, i.e. the parts of the spectrum
that caused the high activations, and display them in Fig. 3.

The receptive elds span 16 elements in the input vector,
which translate to windows of ca. 67 cm−1 width. Hence, as the
receptive elds are small enough to consist e.g. of a single peak,
the viewer can identify common patterns across a small number
of examples as in Fig. 3. In Fig. 3 we show examples for all eight
§ The number was chosen ad-hoc. Considering thez1.200 spectra in the test set,
each with 209 receptive windows (∼240.000 samples), we consider the top 0.04%
examples.

1962 | Digital Discovery, 2023, 2, 1957–1968
channels of the neural network. In the rst row, the receptive
elds that caused the highest output values of the feature
extractor for the respective channel are displayed. In the rows
below, we display examples randomly chosen from these 100
receptive elds. While not identical, it's evident that receptive
elds within a single channel exhibit consistent patterns.

2.4.2 Identifying salient receptive elds. We have now
identied the most activating patterns per channel; in other
words, the type of spectral pattern that each channel attends to
when scanning a spectrum.

As the second step, we conduct an examination of the clas-
sier (the nal fully connected layer), which uses these patterns
and their location in the spectra to carry out classications.
Each neuron in the classier can be mapped to a channel and
a feature vector in the latent matrix, which in turn can be
mapped to a pattern (as in Fig. 3) and a wave number range in
the input spectra, respectively. Therefore, a neuron exhibiting
a high weight indicates that the pattern and spectral region
associated to it have high importance when classifying a func-
tional group. The output for each functional group is connected
to the channel output of the CNN via [nChannels × nPositions]
neurons. In Fig. 5, we visualize the weights for nitrile and alkene
as a comparison. In particular, we see that the middle channels
is important for both. From Fig. 3, we can identify those as
a broad peak and a at region.

By combining the learnt features and their connection to the
prediction for each functional group, we can make concise
statements about the patterns the CNN learnt such as “a peak at
2200 cm−1 is strongly correlated with nitrile”. These observa-
tional statements allow us to study whether the patterns the
network uses compare well to empirical practices in spectrum
© 2023 The Author(s). Published by the Royal Society of Chemistry
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identication, and further investigate instances where the CNN
uses unexpected patterns.

3 Results and discussion
3.1 Model performance

As shown in Table 1 the model achieves good performance on
most functional groups across most metrics. Compared to the
F-1 score from the model of Fine et al.,44 considered state-of-the-
art, our scores are slightly worse, which are nonetheless mostly
within the range of the previous results (as compared to Table
S5† in Fine et al.44). Other studies in the literature tackling the
problem in similar ways, but providing only (worse) accuracy
results, are not included in Table 2.46

Spectra classication is a multi-label problem, where each
spectrum can correspond tomore than one label (the functional
group) and the classes are not mutually exclusive. Hence, to
obtain a broader picture of model performance, we also
compute two additional metrics, the molecular perfection and
molecular F-1 dened in Fine et al.,44 which are designed to
capture the ability of a model to correctly predict all functional
groups of a molecule. Briey, Molecular Perfection is the
proportion of spectra in the test set for which the prediction of
all functional groups is correct. For a denition of the molecular
F-1 we refer to Fine et al.44. These metrics are computed for the
functional groups listed in Table S1 (see ESI†).

Before analysing this comparison, we note a key difference
between the approach used by Fine et al.44 and ours. The
authors did not use a test set in their work and instead reported
results on the validation set. Here, we randomly split the
training/validation/test sets 70/15/15 and report results on the
test set, following standard practice in machine learning
research. In Table 2, we compare the molecular metrics between
our approach and Fine et al.44 directly. We observe that the
performance metrics are comparable, although our approach
performs slightly worse. In return, our approach allows for
human-understandable explanations both for individual deci-
sions as well as patterns the CNN has learnt to classify func-
tional groups. In Section 2.4.1, we explain how we utilize the
bottleneck in the feature space to extract insights about the
classication from the trained neural network, resulting in
slightly worse predictive performance in return for increased
interpretability, similar to ndings in Koh et al.47.

Finally, our results were computed as the average across 10
seeded models. Table 1 also shows the standard deviation
Table 2 Performance of our CNNs compared to the results from Fine
et al.44 As we average the performance of 10 CNNs initialized with
different random seeds, we also report the corresponding standard
deviation. With a smaller network architecture, our molecular F-1
score is within range of that from Fine et al.44. The value enclosed in
parentheses signifies the standard deviation expressed in terms of the
last given digit

Molecular perfection Molecular F-1

Rieger, Wilson and Flores (ours) 0.59(2) 0.895(5)
Fine et al.44 0.63 0.905

© 2023 The Author(s). Published by the Royal Society of Chemistry
across the seeded models as values within parenthesis, with the
precision of the last signicant digit of the mean. The standard
deviation values are low across most metrics and functional
groups, indicating our model architecture yields consistent
predictions across random initializations.

3.2 Consistency between neural networks

In Section 2.4.1, we outlined how explanations can be extracted
from a trained CNN. In this section, we evaluate whether the
same patterns are found across multiple CNNs. In Section 3 it is
shown that the performance variance between CNN trained
with different random seeds is small. To examine the difference
between the trained CNNs, we can inspect either the patterns
that have been learnt or inspect how aligned important loca-
tions are between CNNs. Since the rst task requires assump-
tions about the commutability of channels, we focus on the
alignment of locations. As a reminder, the nal dense layer
outputs the classication for each functional group, and has
a weight matrix with dimensions 8 × 209 × 17. Since we are
interested in the alignment of important locations, for each
functional group we obtain the maximum of the weight matrix
across all channels.

Intuitively, if the differently seeded neural networks learnt
similar important regions, the vectors with the dimensions 1 ×

209 for each functional group will look similar across neural
networks. To verify this, we visualize the linear layer weights for
two exemplary functional groups in Fig. 6 (the extended version
with all functional groups is shown in Fig. S4†). To facilitate
better understanding we have mapped the dense layer weights
back to the corresponding wave number scale in the input
spectra, similar to Fig. 5. Since the inputs of the dense layer are
normalized by the nal batch normalization to have zero mean
and standard deviation one, the dense layer weights indicate
how much each region contributes to the nal classication.

For each linear layer we plot the mean and standard deviation
of the maximum value across the channels. We see that – on
average – the CNNs highlight distinctive peaks for methyl and
alkene groups, indicating these regions to be important when
classifying the functional groups. The low standard deviation (as
indicated by the shaded area around the mean) also indicates
that all neural networks have learnt that e.g. the region around
3000 cm−1 – characteristic of C–H stretch – is important to
classify methyl groups; likewise, the region around 1600 cm−1 –

distinctive of C]C stretch – is important to classify alkenes.
We further note that the important regions emphasized by

our CNNs compare well to those in Fine et al.,44 e.g. the “alkene
bending motion around 900 cm−1.”. We therefore conclude that
CNNs learn consistent patterns across diversely seeded
networks to classify functional groups, and these patterns seem
related to characteristic group frequencies. In the following
sections we will examine these patterns in depth using
explainability methods.

3.3 Scientic insights by explainability

We compare the patterns learned by the CNN to those used by
experts when carrying out spectrum assignment. Experts
Digital Discovery, 2023, 2, 1957–1968 | 1963
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systematically examine the absorptions at group frequencies,
i.e., the frequencies characteristic of a functional group. An
initial discrimination focuses on peaks in sparse regions, e.g.,
above 3000 cm−1, or in regions with strong and distinctive
absorptions, e.g., carbonyl groups found ca. 1700 cm−1.
Whether absorptions are present or not in these regions rules
out some functional groups. Further analysis might focus on
examining the ngerprint region (400–1500 cm−1) used to
uniquely recognize a compound; however, the ngerprint
region is seldom used because it is typically crowded with
a large number of peaks. Finally, experts use the evidence,
previous knowledge on the sample and heuristic rules to assign
a spectrum.

3.3.1 Most classiers use characteristic group frequencies.
Similarly to human experts, we observe that the CNN focuses on
narrow regions in the spectra to make predictions. For instance
in Fig. 5, we see that the weights of the classier corresponding
to nitriles are larger for features ca. 2200 cm−1. Not only is this
the only relevant region used for prediction, but it is also the
region characteristic of C^N stretching vibrations from
nitriles. The same applies to alkenes: even if the weight heat-
map is not as clean as for nitriles, the classier weights shown
in Fig. 5 emphasize the spectral regions at ca. 1600 cm−1 and
3100 cm−1, which correspond to the group frequencies that
characterize the stretching vibrations of C]C bonds and C–H
bonds, respectively. Fig. S6–S22† indeed show that most clas-
siers emphasize spectral regions in the receptive eld where
group frequencies are found. Crucially, CNNs initialized with
different random seeds use the same patterns as shown and
described in the example in Fig. 6. These observations provide
qualitative assurances that the model will generalize well on
unseen data, since it makes predictions based on meaningful
patterns, i.e. the characteristic frequencies of functional groups.

However, when we revisit the results for nitriles we note that,
while the CNN has clearly learned the location of C^N vibra-
tions, the precision, recall and F1 scores of the nitrile classier
are relatively poor (Table 1). Only 4% of the spectra come from
Fig. 4 Spectrum patterns and weights for the alkene classifier, cropped
are expected. The heat map illustrates the weights of the classifier from l
three channels, alongside with the most activating patterns for each cha

1964 | Digital Discovery, 2023, 2, 1957–1968
nitrile compounds so it is possible that the dataset has too few
instances of nitriles to learn other relevant features besides the
main C^N band. Class imbalance is known to skew the clas-
sier's bias towards the majority class.57 Hence the model
misclassies a substantial number of instances in the minority
class, leading to poor precision and recall. This argument is
further supported by the high AUC (0.97) which is a metric
robust against class imbalance. Upon closer examination,
however, even less represented classes such as alkynes and
aldehydes (proportion 0.02, Table 1) are classied with better
precision and recall scores than nitriles, suggesting that class
imbalance is not the only reason for the poor classication
metrics of nitriles; separability issues might also be at play. We
expect functional groups with more and stronger characteristic
IR bands to be easier to identify. Nitriles exhibit only a single
and relatively weak distinctive vibration: the C^N stretching
band. In contrast, both aldehydes and alkynes exhibit several
characteristic bands, with comparatively stronger intensities,
that might make them easier to classify. In short, the relatively
poor classication performance of nitriles might be related not
only to class imbalance, but also to an inherent difficulty to
classify them as they exhibit only one weak characteristic band.
These observations imply that, even if a classier has learned
the group frequencies, it might not produce accurate results
given the class imbalance in the dataset and separability chal-
lenges between spectra.

3.3.2 The CNN learns to use peaks, peak shoulders and
tails in the spectra. The patterns in Fig. 3 illustrate the frag-
ments of spectra that activate the CNN the most; i.e., those
patterns where classication is most certain. As seen in Fig. 3,
the patterns are mostly peaks with varying widths. Some
patterns resemble single, symmetric peaks, while others
resemble a peak followed by at tails, indicating that the CNN
has learnt to identify not only spectroscopic peaks but also uses
the absence of peaks, i.e. the tails, to make classications.

Fig. 4 zooms into the rst three feature variables of the
alkene classier within 1350–1950 cm−1. The characteristic
to the first three channels and within the region where C]C vibrations
ow in purple to high in yellow. The weights are shown only for the first
nnel.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Visualization of classifier weights indicating important regions of the spectrum. Weights below zero are set to zero to focus on positive
contributions to the output classification. For the nitrile classifier, the area ca. 2200 cm−1 is the only significant region, which coincides with the
nitrile group frequency ca. 2260 cm−1. The alkene classifier exhibits salient weights ca. 900, 1600 and 3100 cm−1, in reasonable agreement with
the group frequencies of alkenes.

Fig. 6 Visualization of the final linear layer weights as the mean and
standard deviation across ten neural networks for two functional
groups, methyl and alkene. All neural networks are in agreement about
important regions, providing evidence that the learnt features are
robust. The weights are unitless.
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group frequency of alkene is added for comparison, alongside
the patterns that lead to the strongest activation for each
channel. We see in the gure that peaks followed by a tail
(channels 1 and 3) activate the most above 1620 cm−1. In
contrast, patterns of tails followed by a peak (channel 2) activate
the most below 1620 cm−1. In all cases, the peak in the patterns
is oriented towards the wave number where C]C vibrations are
expected, while the tails orient away from this region. We
interpret these patterns as the CNN learning to emphasize that
ca. 1620 cm−1, a single peak – without any neighbors – is
a characteristic to classify alkenes. For context, the C]C
absorption bands ca. 1650 cm−1 are not the only ones within
this region; a variety of vibrations from carbonyl C]O bonds
are also expected. Acyl halides, esters, aldehydes, carboxilic
acids, ketones and amides, all share C]O absorptions ca.
1650 cm−1. Moreover, these absorptions are highly sensitive to
the electronic environment in the vicinity of the bond, oen
resulting in many overlapping bands with complex shapes. As
the region at ca. 1650 cm−1 is crowded with peaks frommultiple
functional groups, we believe the CNN places extra emphasis on
distinguishing peaks from C]C vibrations – characteristic of
alkenes – from those of C]O vibrations. The network thus
assigns high weights to tail-peak and peak-tail patterns that
outline a single peak with no neighbors.

3.3.3 Some classiers do not emphasize group frequencies.
For some functional groups, the classier weights do not exhibit
any clear emphasis on spectral regions. The alkyl halides
© 2023 The Author(s). Published by the Royal Society of Chemistry
classier, while performing with reasonably good accuracy (see
Table 1), exhibits comparatively noisier classier weights
(Fig. S14†). The absence of clearly salient patterns on the clas-
sier weights might be related to the fact that the characteristic
frequencies of alkyl halides lie within the crowded ngerprint
region. As a consequence, the network might be encouraged to
attend to multiple spectral regions to enhance classication
certainty. As an example, terminal halides also exhibit C–H
wags (1100–1300 cm−1) that the network seems to be using for
classication (Fig. S14†). These observations suggest limita-
tions on the network's ability to generalize. Although C–H wags
are not inherently characteristic of halides, the classier has
learned to leverage their presence in the dataset. If presented
with a new dataset where, for instance, more hydrogen atoms
are replaced by halides, the C–H wags will not be that common
and the network might struggle to correctly classify halides.

Not all activated regions on the classier weights coincide
with group frequencies. For instance, carboxylic acids have
group frequencies within 1500–1700 cm−1, yet their network
weights (Fig. S18†) show strong activations >3500 cm−1. This is
expected given that carboxylic acids share with alcohols O–H
bonds that vibrate at ca. 3570 cm−1, and both groups co-occur
frequently in the dataset (Fig. S23†). Their activation weights
are consequently similar.

However, the same argument cannot be made for the nitro
and ketone compounds. Their classier weights share relatively
strong activations between 2400 and 2700 cm−1, a region
usually devoid of characteristic bands. At this point it is unclear
what the CNN has learnt from this region since the region is
activated across all channels, meaning it uses most patterns –

peaks, peak shoulders, tails – to make classications. We
further investigate whether the network uses spurious patterns
such as post-processing artifacts or non-apparent spectroscopic
signals.

We visualize the spectra within the 2400–2700 cm−1, and
segregate these into two subgroups: one where a particular
functional group is present, the other where said functional
group is absent. Fig. 7 illustrates the overlap of these subgroups
for nitro and ketone groups; Fig. S24† completes the series for
all functional groups. The spectra exhibit symmetric peaks of
Lorentzian and pseudo-Voight lineshape, as expected from
Digital Discovery, 2023, 2, 1957–1968 | 1965
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Fig. 7 Sub-samples of infrared spectra from small organic molecules
within the 2400–2700 cm−1 region. Top left – nitro absent, top right –
nitro present, bottom left – ketone absent, bottom right – ketone
present. The black dotted line indicates the median spectrum.
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infrared absorption bands. Notably, there are no spurious
patterns typical from spectral noise (e.g. outliers) nor from pre-
processing (e.g. discontinuities or asymmetrical curves). We
conclude that the patterns within the 2400–2700 cm−1 region
originate from infrared absorption bands, even if these are not
typically considered to be characteristic of functional groups.
Bands within the 2400–2700 cm−1 are usually assigned to
anharmonic vibrations: overtones that result from higher-
energy harmonics of fundamental vibrations, or combination
bands that derive from the simultaneous excitation of multiple
vibrational modes in the molecule.58,59 These vibrations result
in weak absorption bands in the spectrum and so experts
seldom used them for molecule identication.7 Fig. 7 suggests,
however, that these bands are detectable and suitable enough
for the CNN to make classication more certain.

The presence of bands within the 2400–2700 cm−1 region
does not imply that they effectively discriminate between
functional groups. For the case of ketones, the median intensity
in Fig. 7 is similar for both spectra with and without the func-
tional group. The role of these bands in the classier's decision
for ketones is unclear: the classier exhibits high activations in
this region, even if the spectra are not very different from each
other upon visual inspection. On the other hand, the median
lines for nitro subgroups are clearly different: the spectra of
nitro-containing molecules exhibit – on average – fewer bands
within 2400–2700 cm−1 compared to molecules without the
1966 | Digital Discovery, 2023, 2, 1957–1968
nitro group. Therefore, these bands are suitable to distinguish
spectra with and without nitro compounds, and thus explains
the high attention the nitro classier assigns to this region. In
summary, our observations suggest that the CNN uses not only
fundamental vibrations characteristic of the functional groups,
but also overtone and combination bands, to maximize the
accuracy of its classications.

4 Conclusion

In this work we report on the development of a 1D convolutional
neural network to classify the spectra of small organic mole-
cules according to their functional groups. Despite being
comparatively smaller than previously reported models, our 1D
CNN classies the presence of functional groups with perfor-
mance metrics comparable to the state-of-the-art. We also
demonstrate that our simplied model architecture provides
consistent predictions across randomly initialized instances of
themodel, and consistently attends to the same spectral regions
when classifying functional groups. We extend this investiga-
tion and analyse the patterns the neural network discovers in
the spectral data. We employ a novel two-step explainability
technique, where we visualize (i) the spectral patterns (lines,
curves, peaks) strongly activating the latent representation of
the spectra, and (ii) the receptive elds resulting in the most
salient weights in the linear classier. In combination, these
analyses enable unraveling the location and shape of the spec-
tral patterns that improve classication certainty. We nd that
many of the patterns learnt by the model are consistent with
symmetric peaks at the location of the well-documented func-
tional group frequencies, which provide qualitative assurances
that the model will perform well on unseen data. Unexpectedly,
the network also seems to use the absence of peaks and
anharmonic molecular vibrations (overtones and combination
bands) to make classications. Our explainability approach also
reveals potential limitations of the model. In nitriles, for
instance, class imbalance and the presence of only one char-
acteristic band result in poor classication accuracy, even if the
CNN learns to attend to the C^N vibration band. In addition,
the halide classier attends to C–H wag vibrations due to their
prevalence in the dataset, even if these vibrations are not
intrinsic to the functional group. As a result, the nitrile and
halide classier might perform poorly in unseen data.

More broadly, the patterns learnt by the CNN can be ratio-
nalized in terms of the principles of infrared absorption:
chemical moieties absorb infrared light at characteristic group
frequencies, such absorptions are peak-shaped, and might give
rise to anharmonic siblings such as overtones and combination
bands. This clear connection between physico-chemical prin-
ciples and CNN patterns enables us to qualitatively assess the
generalization abilities of the network, and further clears the
path to leverage more chemical/physics-based knowledge in
future model design. Physics-based intuition can be incorpo-
rated into the model, for example using IR tables to (smart-)
initialize parameters, initializing lters that optimally recognize
peaks, and/or transferring understanding from pretrained
models60 to new datasets (potentially even from different
© 2023 The Author(s). Published by the Royal Society of Chemistry
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spectral regions). Our results also highlight that bigger models
are not always better; through a judicious balance between
performance and explainability considerations, we deliver
a predictive model that maintains transparency without
compromising on predictive performance.
Data availability

The code used for this project is available at the public GitHub
repository: https://github.com/laura-rieger/SpectraML-
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