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approaches for human-intestinal-absorption
prediction in the early drug-discovery stage†

Koichi Handa, *a Sakae Sugiyama,b Michiharu Kageyamaa and Takeshi Iijimaa

It is important to precisely predict the intestinal absorption ratio (Fa) at an early stage in the discovery of

orally available drugs because it directly influences drug efficacy. Gastrointestinal unified theoretical

framework (GUTFW) and machine learning (ML) are commonly used to predict the percentage of Fa. In

GUTFW, the Fa of a drug is estimated using an equation based on the mechanism of human intestinal

absorption, dose, solubility, membrane permeability, and dissolution of the drug. The experimental values

of these in vitro parameters are required to accurately predict Fa. However, most of these values are

unavailable at early stages of development. ML uses a limited dataset of the observed Fa values of drugs

in humans. In this study we combined GUTFW and ML to compensate for each defect. We collected

published data on the chemical structures of 460 drugs, including Fa and dose amounts. The key

parameters of the GUTFW (Do, dose number; Dn, dissolution number; Pn, permeation number),

solubility, membrane permeability, and structural descriptors were calculated and used as explanatory

variables for ML. ML algorithms, namely, the random forest (RF) and message-passing neural network

(MPNN; Chemprop), were investigated. The GUTFW model was compared to the conventional ML

method, which uses only structural descriptors, and combined ML method, which uses both structural

descriptors and GUTFW parameters. In addition, using the Chemprop framework, we investigated

important substructures of Fa. Our result suggested that combinational ML produced higher predictivity

than the GUTFW model and conventional ML model in the test dataset (20% of the dataset) [R2 value and

RMSE in the combinational ML method: 0.611 and 19.7 (RF), 0.520 and 21.6 (Chemprop); in conventional

ML: 0.339 and 25.4 (RF), 0.497 and 22.1 (Chemprop); in GUTFW: 0.353 and 31.9]. Additionally, most of

the substructures indicated by the Chemprop framework were consistent with the common knowledge

of medicinal chemistry. We developed an accurate prediction method for human Fa using a combination

of data-driven ML and mechanism-based GUTFW, where the parameters could be calculated without

experimental data, enabling the model to efficiently promote early drug discovery.
Introduction

The oral absorption of a drug is indispensable for a patient's
quality of life and economic viability.1 Pharmaceutical compa-
nies are trying to develop orally available drugs. However, the
difficulty in drug development increases every year.2 The
success or failure of clinical trials causes sponsor companies to
thrive or endanger themselves.3 The human absorption rate (Fa)
of a drug is closely related to its bioavailability and is an
important parameter that is directly related to drug efficacy.
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tion (ESI) available. See DOI:

the Royal Society of Chemistry
Thus, the estimation of the human Fa of a candidate drug
before clinical trials is an important issue because it greatly
affects the success rate of subsequent clinical trials.

Regarding in vitro systems, JP2 solubility,4 PAMPA,5 and
Caco-2 (ref. 6) are well-known methods for predicting drug
absorption in humans at the non-clinical stage. However, the
mechanism of absorption is too complex and is related to the
diffusion of the compound for solubility,7,8 membrane perme-
ability,9,10 and active efflux transport by transporters, such as P-
gp.11 Therefore, it is difficult to predict the human Fa with high
accuracy, even if any of these in vitro experiments are combined.
In ex vivo experiments, in situ perfusion through isolated
intestinal segments in rats is well known; however, it is not
a perfect predictor of absorption.12 In in vivo experiments,
specically animal PK experiments, only research on soluble
compounds has been performed, and the Fa values of rats and
monkeys could be extrapolated to humans.13–15 However, there
is a lack of sufficient data regarding solubility and dissolution.16
Digital Discovery, 2023, 2, 1577–1588 | 1577
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Human Fa data have been obtained for several hundred
compounds from various clinical trials. Based on these data, the
structural descriptor of the compound has been used as an
explanatory variable to build data-driven machine learning
models; however, most of them are 2-class classiers,17–23 which
might reect the complex mechanism of absorption, as PK
prediction of per os (p.o.) is more difficult than that of intra-
venous (i.v.).24 Recently, two studies were conducted to predict
Fa. In the rst study in 2019, the authors aimed to use multiple-
class classiers using Caco-2 permeability and DMSO solubility
as explanatory variables, and nally they built a 3-class classier
with high predictability with accuracy and kappa values of 0.836
and 0.560, respectively.25 In the second study, conducted in
2023, the authors focused on specic compounds with seroto-
nergic activity and built a 2-class classier (AUC 0.72 using the
test set) and a regression model (R2 = 0.047 using the test set).26

Hence, to advance the prediction of human Fa, we aimed to
build a quantitative regression structure–activity relationship
(QSAR) model without dataset selection. The merit of a regres-
sion model is that it can show the exact number as a percentage
of Fa, which can be easily understood by users. Disregarding
dataset selection ensures the applicability domain of the
predictive model.

From another viewpoint, the published machine learning
models completely ignored the dose amount; namely, there
were no dose-related items as explanatory variables.17–23,25,26

However, for solubility-limited drugs, human Fa may vary
according to dosage,27 necessitating the investigation of the
effect of the dosage. A mechanism-based Fa prediction method
that converts drug solubility, diffusion, and membrane
permeability into a mathematical model, known as the gastro-
intestinal unied theoretical framework (GUTFW) model, has
been published.28 In this model, parameters such as solubility,
diffusion, and membrane permeability were obtained experi-
mentally, and Fa was calculated using these parameters
considering the dose. Therefore, when these parameters are
accurately expressed as experimental values, they are expected
to exhibit good prediction accuracy for various compounds.
However, if various parameters are predicted using only the
compound structure, the calculated Fa could have an estima-
tion error for the necessary predicted parameters, which inevi-
tably reduces the prediction accuracy.29

Therefore, in this study, regarding the missing parts of the
existing machine learning model, namely lack of dose infor-
mation and insufficient predictability (solubility, diffusion, and
membrane permeability using only chemical structures) in
GUTFW, we propose a novel Fa prediction model that
compensates for both aspects. Although this model does not
require experimental data, it is expected to be accurate and
extrapolative because it incorporates the mechanism of drug
absorption as a concept. To assess and validate its performance,
a 10-fold cross-validation (CV) procedure and test datasets were
used.

In addition, research on model interpretation in deep
learning models has progressed in recent years.30,31 Based on
this, we aim to contribute to the early drug discovery stage by
1578 | Digital Discovery, 2023, 2, 1577–1588
predicting Fa as well as estimating and calculating the
substructures that are considered important for Fa absorption.

Materials and methods
Method overview

We developed a novel method that combines the key parame-
ters of GUTFW with structure descriptors calculated by ADMET
Predictor™ 9.0 (AP)32 to predict human Fa. For comparison, we
predicted human Fa using the GUTFW and conventional
machine learning (ML) methods. Thesemethods are outlined in
Fig. 1.

Data collection and standardization of compound
representations

All 460 compounds used in this study had Fa values observed in
humans.29 Each clinical dose was collected using published
information from articles and clinical websites, as presented in
Table S1.† The structured data (SD) les of all compounds were
obtained from PubChem.33

Analysis of the chemical space of the complete dataset

The distribution of the Tanimoto similarity of the ve-nearest
neighborhood (5NN) was calculated with ECFP4 using the
RDKit (version 2020.09.01) Chem functions.34 This was then
compared with the Food and Drug Administration (FDA)-
approved drugs, consisting of 2503 compounds obtained from
DrugBank (version 5.1.8), using canonical SMILES obtained
through the same process for prepared compounds mentioned
above as the input structure.35 The distributions were then
assessed for signicant differences using the Kolmogorov–
Smirnov test. To achieve this, we utilized the stats.ks_2samp
function from the Scipy (version 1.7.0) library with the alter-
native option set to ‘two-sided.’ For each compound, 5NN
similarity was calculated using the Balk–Tanimoto similarity
function in RDkit (version 2020.09.01) by averaging the simi-
larity scores of the top ve most similar compounds.34

Analysis of the chemical space of training and test dataset

Principal component analysis (PCA) was performed using
DataWarrior (version 5.2.1).36 Specically, canonical SMILES of
the dataset were used to calculate FragFp37 ngerprints. FragFP
ngerprints were used to calculate the normalized PCA scores
for the two components. Furthermore, we performed the same
process using all of 278 descriptors calculated in AP.

Generation of chemical descriptors

The SD les of the chemical structures considered in this study
were used as inputs for AP. The pH value when calculating the
structure descriptors was 7.4 according to the physiological
conditions, and these were used to specify the ionization state
of each compound. We obtained 38 descriptors out of 278 using
the correlation lter (<0.7). In this process, we retained the rst
listed descriptor in the original column output from AP, and
removed other correlated descriptors. Additionally, the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Flow chart of the methods used in this study. The collected Fa dataset was used to build five models in this study. The GUTFWmodel used
only Do, Dn, and Pn. On the other hand, conventional ML models (e.g., RF: random forest or MPNN: message-passing neural network) used
structural descriptors. Additionally, the combined ML models used the structural descriptors, Do, Dn, and Pn.
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predicted solubility and membrane permeability were calcu-
lated. According to the manuscript of AP,32 the root mean
square error (RMSE) and R2 value in the test dataset for solu-
bility were 0.605 and 0.908 with 955 test compounds and 2641
training compounds (S+Sw model). Those values in the test
dataset for membrane permeability were 0.482 and 0.718 with
57 test compounds and 286 training compounds (S+MDCK
model).

Generation of key parameters in the gastrointestinal unied
theoretical framework

Do, dose number; Dn, dissolution number; and Pn, permeation
number were calculated using Bioavailability Design Mini™
1.2; the theoretical background is shown in the following eqn
(1) to (3); where Dose, S, VGI, kdiss, Tsi, and kperm are the
amount of dose, solubility, volume of gastrointestinal tract,
dissolution rate coefficient, intestinal transit time, and perme-
ation rate coefficient, respectively.38 The solubility calculated
with AP was used as S. The membrane permeability calculated
with AP was used to calculate kperm in Bioavailability Design
Mini™ 1.2. See the original article in detail.29,39

Do ¼ Dose

S � VGI
(1)

Dn = kdiss × Tsi (2)

Pn = kperm × Tsi (3)

Fa can be obtained using eqn (4).
© 2023 The Author(s). Published by the Royal Society of Chemistry
Fa ¼ 1� exp

0
B@� 1

1

Dn
þ Do

Pn

1
CA (4)
Machine learning models

Separation of the dataset. To build the ML models, the
datasets were randomly divided into training and test datasets,
with 80% and 20% of the datasets allocated for training and
test, respectively.

Descriptors. For the random forest (RF)40 model, the chem-
ical descriptors calculated in AP were used to construct
a conventional ML model. The key parameters of the GUTFW
(Do, Dn, and Pn) were then added as descriptors to construct
another ML model known as the combined ML model. In the
message-passing neural network (MPNN)41 model, the graph of
the chemical structure was directly used to construct an ML
model, and Do, Dn, and Pn were added as external features to
construct another combined ML model.

Algorithm of machine learning. To compare the GUTFW, we
used two different machine learning algorithms. One was RF40

and the other was MPNN.41 For RF, the Caret package (ver. 6.0-
79)42 and the random forest package (ver. 4.6-14)43 in R
(ver.3.4.4) were used, and the parameters were set as default.
For MPNN, Python (ver. 3.7.10) was used in conjunction with
Chemprop (version 1.3.1) library, and the parameters were set to
default.41,44
Digital Discovery, 2023, 2, 1577–1588 | 1579
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Model validation. To validate the constructed models,
particularly the machine learning models, a 10-fold CV using
the training dataset was performed. In addition, an external test
was conducted using a test dataset that was prepared using 20%
of the entire dataset before model construction. The GUTFW
model was also validated using a training dataset and an
external test; however, the GUTFW model was based on the
mechanism of human intestinal absorption. Thus, no CV was
performed, and predictions were made based only on theory.

Metrics to compare each in silico model. To evaluate the
predictive accuracy of the models used in this study, we calcu-
lated the RMSE and R2 results of the observed and predicted
values. This is expressed in eqn (5) and (6), where ai, bi, N, and i
are the observed value, predicted value, number of samples, and
number of individuals, respectively. Here, ai and bi are at the
original scale. SSres is the sum of the squared residuals and SStot
is the total sum of the squares.

RMSE ¼
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai � biÞ2

N

s 1
A

2

(5)

R2 value ¼ 1� SSres

SStot

(6)

Descriptor importance evaluation

We used the mean decrease in the Gini coefficient as the Gini
index included in the RF algorithm to rank the descriptors
associated with the predictions of Fa in the combined RF
model. This method quanties the factors contributing to the
regression accuracy.45

Important substructure search

We also estimated the important substructures of Fa using
a conventional MPNNmodel withMonte Carlo tree search.31 For
Fig. 2 Analysis of the chemical space of compounds used compared w
number of compounds for the compounds used in this study and FDA ap
number of compound fits in the specified 5NN Tanimoto similarity bin to
pale orange bar represents the ratio of the number of FDA approved drug
FDA approved drugs collected in this study.

1580 | Digital Discovery, 2023, 2, 1577–1588
this calculation, we used two models to investigate the positive
and negative substructures of Fa. To achieve this, an additional
MPNN model with an objective variable of 100 Fa (%) was
constructed based on the building process in the conventional
MPNN model. For the Monte Carlo tree search, “Chem-
prop.interpret.py” was used in Python (ver. 3.7.10) from the
Chemprop library (version 1.3.1), and the parameters were set to
default.41,44 The positive substructures were clustered into 30
groups using FragFp in Data Warrior (version 5.2.1).36 The
centroid structure was selected as representative of each cluster.
The compounds that included these substructures and whose
Fa were >95% were scrutinized. All negative substructures were
scrutinized with compounds whose Fa were below 5%. To
understand the substructural properties, we calculated cLogP
and PSA using ChemDraw (version 15.1.0.144) and BIOVIA
Insight for Excel 2021 (Dassault Systèmes SE), respectively.
Results and discussion
Analysis of the chemical space of compounds used compared
with FDA-approved drugs

Before building the QSAR model for Fa, we analyzed the
chemical space of the prepared dataset to check its bias using
the 5NN of the Tanimoto similarity. The results of this analysis
are shown in Fig. 2A. The average 5NN Tanimoto similarity in
the dataset collected in this study was 0.352, which was lower
than that of FDA-approved drugs (0.429). The p-value of the
average of 5NN Tanimoto similarity between the compounds
collected and FDA-approved drugs was 2.11× 10−15. In absolute
terms, a similarity above approximately 0.3 in the ECFP4/
Tanimoto space oen indicates similar bioactivity.46 Further-
more, we checked the ratio of the compounds to the total
number of compounds (Fig. 2B), and the diversity of the
compounds also seemed to be more than that of FDA approved
drugs. Hence, the compounds prepared in this study have
moderate diversity. Specically, the QSAR model built in this
ith FDA-approved drugs using 5NN with ECFP4. (A) Histogram of the
proved ones. (B) The height of each blue bar represents the ratio of the
the total number of compounds used in this study. The height of each
fits in the specified 5NN Tanimoto similarity bin to the total number of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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study can be expected to be applied to a wide range of
compounds.

Training dataset and test dataset

Next, to check whether the separation of the dataset into
training and test datasets did not include any bias and whether
the test dataset could be covered by the training dataset, we
performed PCA analysis using FragFP. The results are shown in
Fig. 3A. The cumulative explained variance percentages of PC1
and PC2 were 28.2%. The training and test datasets were evenly
distributed in chemical space. Furthermore, we checked it
using AP descriptors; although the distribution was more
condensed than that using FragFP, the result was the same with
FragFP that training and test datasets were evenly distributed in
chemical space (Fig. 3B). The cumulative explained variance
percentages of PC1 and PC2 were 28.8%. Therefore, the chem-
ical space of the test dataset was covered by that of the training
dataset.

Predictivity of the mechanism-based model—gastrointestinal
unied theoretical framework model

To investigate the predictive ability of the model, we calculated
the Fa values using the GUTFWmethod. Because GUTFW is not
Fig. 3 Evenly spread training and test datasets used in this study in t
respectively. White and black circles represent the training and test data

Table 1 Statistics of each model built in this study and better R2 and RM

Method GUTFW
RF with AP
descriptors Ch

Evaluation Training data Test 10-fold CV Test 10

N 368 92 368 92 36
R2 0.181 0.353 0.233 0.339 0.
RMSE (%) 37.6 31.9 27.9 25.4 23

© 2023 The Author(s). Published by the Royal Society of Chemistry
a data-driven method, the separation of datasets into training
and test datasets is not required to evaluate this model.
However, in this study, the models were easily compared by
dividing the dataset for the GUTFW model, same as that for
other models. The results are presented in Table 1 and a plot of
the observed and predicted Fa values in the test dataset is
shown in Fig. 4A. The RMSE values of the GUTFW model were
37.6% and 31.9% for training and testing, respectively; there-
fore, its predictivity may pose a potential risk of over 30% error
in human intestinal absorption at the clinical stage (Table 1).
Next, we counted the number of compounds that were under-
estimated by less than −15% and −30% (this means worse
predictivity than 15%) and overestimated by more than 15%
and 30% (this means worse predictivity than 15%). The plot in
GUTFW indicates the tendency of this predictivity to be oriented
toward underprediction. The number of compounds that were
underestimated by less than −15% and −30% was 20 and 24,
respectively, and the number of compounds that were over-
estimated bymore than 15% and 30%was 10 and 6, respectively
(Fig. 4A). The difficulty of predicting Fa using only chemical
structures was highlighted by Sugano et al.29 In particular, using
the GUTFW model without experimental data led to predictive
errors associated with the in silico values, which were the
he PCA plot. The x and y-axes represent the PC1 and PC2 scores,
sets, respectively. (A) PCA using FragFP, (B) PCA using AP descriptors.

SE when combining Do, Dn, and Pn with ML descriptors

emprop

RF with AP
descriptors and Do,
Dn, and Pn

Chemprop with Do,
Dn, and Pn

-fold CV Test 10-fold CV Test 10-fold CV Test

8 92 368 92 368 92
396 0.497 0.449 0.611 0.415 0.520
.5 22.1 23.7 19.7 23.1 21.6

Digital Discovery, 2023, 2, 1577–1588 | 1581
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Fig. 4 Plot of predicted and observed Fa values of test dataset in each model built; the solid and dashed lines represent ±15 and 30% of errors,
respectively. (A) GUTFWmodel, (B) RF with AP descriptors, (C) Chemprop, (D) RF with AP descriptors and Do, Dn, and Pn, (E) Chemprop with Do,
Dn, and Pn.
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solubility andmembrane permeability values predicted by AP in
this study. This indicates that the predictive ability of the
GUTFWmodel can be improved by introducing a more accurate
calculator for these parameters.

Predictivity of the conventional machine learning model
using only the chemical structure as an explanatory variable

Next, we investigated the conventional ML model to predict Fa
and compared its predictivity with that of the GUTFW model.
The R2 value and RMSE in the 10-fold CV and test datasets are
shown in Table 1, and the plot between observed and predicted
values is shown in Fig. 4B and C. First, in the case of the RF
model using AP descriptors as explanatory variables, the R2

values (0.233) in the 10-fold CV were higher than those in the
GUTFW model (0.181), and the RMSE (27.9%) in the 10-fold CV
was lower than that in the GUTFW model (37.6%). In the test
dataset, the R2 value (0.339) was lower than that of the GUTFW
model (0.353), whereas the RMSE (25.4%) in 10-fold CV was
lower than that of the GUTFW model (31.9%). There was no
clear tendency of predictivity. In particular, the number of
compounds underestimated by less than −15% and −30% was
20 and 8, respectively, whereas the number of compounds
overestimated by more than 15% and 30% was 20 and 16,
respectively (Fig. 4B). Hence, we can conclude that the predic-
tive ability of the RF model is better than that of the GUTFW
model. Second, in the case of the Chemprop model, in the 10-
fold CV and test datasets, the R2 values, which were 0.396 and
0.497, respectively, were higher than those in the GUTFW
1582 | Digital Discovery, 2023, 2, 1577–1588
model. Furthermore, the RMSE values for 10-fold CV and test
datasets, which were 23.5% and 22.1%, respectively, were lower
than those of the GUTFW model. Therefore, the predictivity of
the Chemprop model for Fa surpasses not only that of the
GUTFW model but also that of the RF model. The number of
compounds with less than −15% and −30% underestimation
was 27 and 6, respectively, whereas the number of compounds
with more than 15% and 30% overestimation was 18 and 11,
respectively (Fig. 4C). Therefore, from the results, this model
may tend toward underprediction. Nevertheless, we conclude
that this model has a better predictability than the GUTFW
model. When comparing the RF and Chemprop models, the
Chempropmodel was superior to the RFmodel, whichmight be
derived from the difference in the representation of chemical
structures. Although the superiority of graph representation
over chemistry descriptors is controversial,47 in the case of the
QSAR model for human Fa using only the chemical structure,
the graph is preferable.

Predictivity of the combined machine learning model using
both GUTFW key parameters and chemistry structure
descriptors

To develop a more accurate method for predicting Fa, we
introduced key GUTFW parameters (Do, Dn, and Pn) into the
ML models. The statistical results are shown in Table 1, and
plots of the observed versus predicted Fa values are shown in
Fig. 4D and E. First, Do, Dn, and Pn were used as descriptors in
the samemanner as the AP descriptors in the RF model. In both
© 2023 The Author(s). Published by the Royal Society of Chemistry
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10-fold CV, R2 value and RMSE were much higher (0.449) and
lower (23.7%) than the GUTFW model (0.181 and 37.6%) and
the conventional RF model (0.233 and 27.9%), respectively.
Furthermore, we conrmed a higher R2 value (0.611) and lower
RMSE (19.7%) for the test dataset compared with the GUTFW
model (0.353 and 31.9%) and the conventional RF models
(0.339 and 25.4%). When comparing the plot of the observed
and predicted Fa using the combined RF model and the
conventional RF model, there was a noticeable improvement;
namely, the number of compounds underestimated by less than
−15% and −30% was 12 and 5, respectively, whereas the
number of compounds overestimated by more than 15% and
30% was 16 and 9, respectively [the numbers in the conven-
tional RF model were 20, 8 (underestimated), and 20, 16 (over-
estimated), respectively] (Fig. 4D). Therefore, the introduction
of Do, Dn, and Pn into the conventional RF model improved the
predictivity. Recently, there has been much research into ML
models that use many types of parameters as explanatory vari-
ables and are known as multimodal models. The improvement
in the predictive accuracy of the RF model in this study was
consistent with the results of previous studies.48–51 Second, Do,
Dn, and Pn were used as external features to represent the graph
in Chemprop. In both 10-fold CVs, the R2 value and RMSE were
much higher (0.415) and lower (23.1%) than those of the
GUTFW model (0.181 and 37.6%) and the conventional Chem-
prop model (0.396 and 23.5%). Furthermore, we conrmed
a higher R2 value (0.520) and lower RMSE (21.6%) in the test
dataset compared with the GUTFW model (0.353 and 31.9%)
and the conventional Chemprop model (0.497 and 22.1%),
respectively. When comparing the plot of the observed and
predicted Fa values using the combined Chemprop model with
the conventional Chemprop model, an improvement was noted
for overestimation. In particular, the number of compounds
underestimated less than −15% and −30% were 18 and 6,
respectively, while the number of compounds overestimated
more than 15% and 30% were 18 and 12, respectively [the
numbers in the conventional Chemprop model were 27, 6
(underestimated), and 18, 11 (overestimated), respectively].
Therefore, although this was relatively limited compared to the
RF model, Do, Dn, and Pn improved the predictive accuracy.
When we reconsidered the combined effect of descriptors in the
graph-based method, a report on in vivo clearance indicated
that graph representation may not always outperform chemical
structure descriptors.48,51

Furthermore, we investigated the outliers from another
viewpoint. We focused on the 30% outliers of the test dataset in
GUTFW model; there were 26 outliers. When we checked those
26 predictivity in the other predictive models, we could nd that
17 compounds were recovered by the conventional RF model.
We found that the 9 compounds which were not recovered by
this conventional RF model had mostly low Fa; 6 compounds
out of 9 had less than 50% of Fa. When comparing GUTFW with
the conventional Chemprop model in the same manner, 20
compounds were recovered, and 4 out of 6 unrecovered
compounds had less than 50% of Fa. When comparing GUTFW
with the combined RF model, 19 compounds were recovered,
and 4 out of 7 unrecovered compounds had less than 50% of Fa.
© 2023 The Author(s). Published by the Royal Society of Chemistry
When comparing GUTFW with the combined Chemprop
model, 18 compounds were recovered, and 5 out of 8 unrecov-
ered compounds had less than 50% of Fa. In the test dataset of
92 compounds, the number of compounds with Fa less than
50% was only 19. Hence we conclude that further studies are
required since most of the compounds which seem hard to be
predicted have low Fa by any models built in this study.

Importance of Do, Dn, and Pn

According to the results of the combined study of the chemical
structure and key GUTFW parameters inML, the parameters are
highly important in the prediction of Fa. Therefore, to quantify
their importance, we calculated the Gini index, and the results
are shown in Fig. 5. Pn was the most important parameter with
a Gini index of 17.9. Dn ranked third with a Gini index of 7.5. Do
ranked 14th among all 38 descriptors, with a Gini index of 2.0.
Based on these results, all three key GUTFW parameters are
important for Fa prediction in the combined RF model.
However, Do exhibited the lowest importance among the three
key GUTFW parameters, in contrast to our initial prediction.
This may be due to the lack of accurate dosage information
when Fa was observed. This is because the dosage we collected
was not always the same as that used in human clinical studies
to investigate Fa. In a few cases, we made a few assumptions; for
example, the p.o. dose is the same as the i.v. dose, or the dose of
the pro-drug is the same as the dose of the active form (see
Table S1† for details).

When we investigated other descriptors of AP, the molecular
weight was the second most important, with a Gini index of
15.2. This is consistent with the concept of “the rule of ve,”
which states that smaller compounds (specically, less than
500 gmol−1) are more likely to be absorbed in the body, and vice
versa.52 We can speculate on the interpretation of other
descriptors; however, in this study, we simply selected
descriptors based on multicollinearity. Therefore, to avoid
misinterpretation, substructure analysis was performed using
the Chemprop model, as described in the following section.

Estimation of important substructures

Next, to determine the important substructures of Fa, we per-
formed a numerical analysis using the Chemprop framework.
The analysis was performed using two Chemprop models. For
the positive Fa substructures, the model we have already built in
the previous section (Predictivity of conventional machine
learning model using only chemical structures as explanatory
variables) was used, and its predictivities were Rtest

2: 0.497 and
RMSEtest: 22.1% (Table 1). For the negative Fa substructures, we
built a new model, and its predictivities were Rtest

2: 0.516 and
RMSEtest: 21.7%. Based on this predictivity, we can conclude
that both models are acceptable for analyzing substructures.
The results of the representative 30 substructures for positive Fa
selected by clustering and 23 substructures for negative Fa are
shown in Fig. S1 and S2,† respectively.

To interpret the estimated substructures, we selected drugs
whose suggested important substructures either agreed or dis-
agreed with the knowledge of medicinal chemistry. We
Digital Discovery, 2023, 2, 1577–1588 | 1583
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Fig. 5 Plot of Gini index of 38 AP descriptors and Do, Dn, and Pn used in the random forest (RF) model. Each bar represents a Gini index. The
three black bars represent the key parameters of the GUTFW: Pn, Dn, and Do. The description of these 38 AP descriptors is shown in Fig. S2.†
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categorized the Fa-positive substructures into three cases: A to
C. The substructures of case A are shown in Fig. 6A. The feature
of category A is that the compounds have high Fa (>95%) and
the estimated substructures contribute to the increasement of
lipophilicity against the entire structure. For example, cLogP
and PSA of the suggested substructure 1-ethyl-4-methylbenzene
were 2.8 and 0, respectively. The values of the whole compound
structures were 3.6 and 69.6 (ximoprofen) and 3.0 and 37.3
(ibuprofen), respectively. The other examples in case A are the
same. Hence, we can conclude that each substructure contrib-
utes to an increase in lipophilicity compared to the entire
structure, which can lead to improved membrane permeability.
The substructures of case B are shown in Fig. 6B. The feature of
category B is that the compounds have high Fa (>95%) and the
estimated substructures contribute to the decrease of lip-
ophilicity against the entire structure. For example, cLogP and
PSA of the suggested substructure 2-oxo-1,2-dihydropyridine-3-
carbonitrile were −0.7 and 52.9, respectively. The values of
the whole compound structure (milrinone) were 0.2 and 65.8,
respectively. The other examples in case B are the same. Thus,
we can conclude that each substructure contributes to
a decrease in lipophilicity compared to the entire structure,
which can lead to improved solubility. The substructures of case
C are shown in Fig. 6C. The feature of category C is that the
compounds have high Fa (>95%) and the estimated substruc-
tures contribute to the maintenance of lipophilicity balance
against the entire structure. For example, the cLogP and PSA
values of the suggested 1,2,3,4-tetrahydroisoquinoline
substructure were 1.1 and 12.0, respectively. The values of the
whole compound structure (nomifensine) were 1.6 and 29.3,
respectively. Other examples in case C were the same. There-
fore, each substructure contributes to maintaining balanced
lipophilicity against the entire structure, which can lead to
improved membrane permeability and solubility. Additionally,
a substructure, (1S,3R,4S)-3-methylquinuclidine (cLogP: 1.4,
PSA: 3.2), suggested with quinidine (cLogP: 2.6, PSA: 45.6) in
1584 | Digital Discovery, 2023, 2, 1577–1588
case C, contributed to not only maintaining balanced lip-
ophilicity but also disrupting the planarity of the whole mole-
cule, which can lead to better solubility. Although not all
substructures for positive Fa could be interpreted, we could not
nd any substructures that completely disagreed with the
common knowledge and sense of medicinal chemists.

Next, we categorized the Fa-negative substructures into two
cases: D and E. The substructures of case D are shown in
Fig. 6D. The feature of category D is that the compounds have
low Fa (<5%) and the estimated substructures contribute to the
decrease of lipophilicity against the entire structure. For
example, the cLogP and PSA values of the suggested substruc-
ture (2R,3R,5S, or R)-tetrahydro-2H-pyran-2,3,5-triol were −1.2
and 69.9, respectively. The values of the whole compound
structures were −7.2 and 321.2 (acarbose): −1.4 and 206.6
(ouabain), respectively. Hence, we conclude that each
substructure contributes substantially to the decrease in lip-
ophilicity compared to its entire structure, which can worsen
membrane permeability. The substructures for case E are
shown in Fig. 6E. The feature of category E is that the
compounds have low Fa (<5%) and the estimated effect of each
substructure on the whole structure is not consistent with the
results published in previous reports. For example, tetrahydro-
2H-pyran-2,3,5-triol (cLogP: −1.2 and PSA: 69.9) was suggested
as an important substructure in gentamicin (cLogP: −4.2 and
PSA: 199.7). A low permeability of gentamicin has also been
reported.53 Although we can barely interpret that several
hydroxyl groups (H-bond donors) of this substructure contrib-
uted to the decrease in lipophilicity and could lead to the
worsening of membrane permeability, several amine groups,
which were not included in the suggested substructure, were
considered to contribute to the decrease in lipophilicity rather
than the hydroxyl group. Another example is N-
benzylnaphthalen-1-amine (cLogP: −2.9 and PSA: 562.7), which
was suggested as an important substructure in suramin (cLogP:
3.9 and PSA: 12.0). Although it cannot be inferred that the high
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Categorized substructures estimated to be important in: (A)–(C) positive Fa and (D) and (E) negative Fa with cLogP and PSA. The Fa values
of compounds in (A)–(C) were greater than 95%. Conversely, those in (D) and (E) were less than 5%. The substructures in groups (A)–(C) are
shown in blue, and those in groups (D) and (E) are shown in red. In (A)–(C), each substructure contributes to an increase, decrease, and
maintenance of the lipophilicity balance against the entire structure, respectively. In (D), each substructure contributed significantly to the
decrease in lipophilicity compared with the whole structure. In (E), the estimated effect of each substructure on the whole structure is not
consistent with the knowledge of medicinal chemistry.
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planarity and lipophilicity of naphthalene rings contribute to
the increase in lipophilicity and can lead to the worsening of its
solubility, several sulfone groups, which were not included in
the suggested substructure, were considered to contribute to
the decrease in lipophilicity and could lead to the worsening of
membrane permeability. This was supported by the high solu-
bility of suramin (>50 mg mL−1).54 Based on these results, the
important substructures estimated using the Chemprop
framework partially agreed with the results of previous reports.

Regarding the cLogP and PSA used in this section for
discussion, in the AP descriptors originally calculated, similar
descriptors were included as Moriguchi descriptors which
constitute MLogP, a well-known LogP calculated value55 and
T_PSA (topological polar surface area). Therefore, through the
success of the RF model with AP descriptors, we have also
examined the effect of cLogP and PSA indirectly.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Conclusion

In this study, we collected published data on 460 drugs with
moderate diversity in chemical structures, Fa, and dose
amounts in humans. To determine the most accurate Fa
prediction method, we combined mechanism-based and data-
driven methods. The novel ML method, which incorporated
both structural descriptors and GUTFW parameters, demon-
strated a higher predictivity than GUTFW and conventional ML
models for the 10-fold CV and test datasets. Hence, we devel-
oped a more accurate prediction method for human Fa using
a combination of data-driven ML and a mechanism-based
GUTFW that does not require any experimental data using the
RF algorithm. This model is expected to have applications in the
early drug discovery stage because it does not require experi-
mental data, whereas the GUTFW prediction appears to be
Digital Discovery, 2023, 2, 1577–1588 | 1585
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suitable for the late drug development stage because it requires
accurate experimental data. Furthermore, the important
substructures calculated in the Chemprop framework partially
agree with the knowledge and experience of medicinal chem-
ists. Considering these limitations, further computational
studies are required to assess and improve the efficiencies of
candidate drugs.
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Intestinal absorption ratio

GUTFW
 Gastrointestinal unied theoretical framework
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 Machine learning

Do
 Dose number

Dn
 Dissolution number

Pn
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 Random forest

MPNN
 Message-passing neural network

QSAR
 Quantitative structure–activity relationship

CV
 Cross-validation

AP
 ADMET Predictor™ 9.0

SD
 Structured data

5NN
 Five-nearest neighborhood

FDA
 Food and Drug Administration

PCA
 Principal component analysis

RMSE
 Root mean square error
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