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perty prediction of ionic liquids
from limited labeled data: a one-stop framework
empowered by transfer learning†

Guzhong Chen, ab Zhen Song, *a Zhiwen Qi *a and Kai Sundmacher bc

Ionic liquids (ILs) could find use in almost every chemical process due to their wide spectrum of unique

properties. The crux of the matter lies in whether a task-specific IL selection from enormous chemical

space can be achieved by property prediction, for which limited labeled data represents a major

obstacle. Here, we propose a one-stop ILTransR (IL transfer learning of representations) that employs

large-scale unlabeled data for generalizing IL property prediction from limited labeled data. By first pre-

training on ∼10 million IL-like molecules, IL representations are derived from the encoder state of

a transformer model. Employing the pre-trained IL representations, convolutional neural network (CNN)

models for IL property prediction are trained and tested on eleven datasets of different IL properties. The

obtained ILTransR presents superior performance as opposed to state-of-the-art models in all

benchmarks. The application of ILTransR is exemplified by extensive screening of CO2 absorbent from

a huge database of 8 333 096 synthetically-feasible ILs.
1 Introduction

Ionic liquids (ILs) are molten salts comprised fully of cations
and anions, which can remain in liquid state around room
temperature. In recent years, ILs have attracted remarkable
attention in various applications, both in chemistry and engi-
neering,1,2 due to their unique physicochemical properties such
as negligible vapor pressure, high thermal and electrochemical
stability, wide liquidus range, etc.2,3 More importantly, ILs also
offer great potential to tune their physical and chemical prop-
erties by judicious selection of the cations and anions. For this
reason, ILs could be designed to offer desirable properties to
meet specic requirements for arbitrary given applications. The
challenge, however, is to accurately evaluate various IL proper-
ties related to the target performance and identify optimal ILs
from the nearly innite combinations of possible cations and
anions.4,5

So far, IL selection toward a specic process mainly relies on
laborious trial-and-error experiments. However, such
approaches are not only very time-consuming but also limited
to a small IL chemical space, leaving many potentially
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promising structures unexplored. Alternatively, computational
methods can be used for estimating the properties of ILs and IL-
involved mixtures.6 Traditional models such as equations of
states (EoSs)7 and group contribution models (GCMs)8,9 have
been widely employed for estimating the thermodynamic,
transport, and EHS (environment, health, and safety) related
properties of ILs. Nevertheless, both the two schemes are prone
to the inherent weakness of limited predictive power and/or
insufficient accuracy.8 Another computational method for IL
property prediction is the quantitative structure–property rela-
tionship (QSPR) approach, wherein a property of interest is
correlated quantitatively with certain descriptors of involved
molecules9,10 (for which machine learning methods have
recently gained popularity11–17). Notably, the availability of IL
property databases like ILThermo18 has stimulated the use of
ML methods for modeling IL properties, wherein diverse types
of molecular descriptors were used as IL representation.19–26

However, despite the high accuracy achieved by these models,
such models still suffer from the inherent weakness of molec-
ular descriptors for IL representation as well as the relatively
limited databases of IL properties available for model develop-
ment. Moreover, manually engineered IL descriptors usually
require expert knowledge of specic types of ILs and the prop-
erties to be modeled, which could work well for specic tasks
but may not generalize well for others.27 In the past few years,
there has been rapid progress in ML methods, particularly deep
neural networks (DNNs). These DNN-based methods have
garnered signicant attention due to their ability to overcome
the limitations of conventional models and achieve high accu-
racy in predicting complex tasks.28–31 The growth of deep
Digital Discovery, 2023, 2, 591–601 | 591
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learning (DL) has offered excellent exibility and performance
to learn molecular representations from data, without explicit
guides from experts.32–34 Typically, a sufficiently large labeled
training dataset is desirable for developing DL approaches.35

This is practical in areas like image classication as the number
of labeled samples could easily reach several millions or even
more. However, it is obviously not the case for IL properties
prediction, for which the labeled datasets available are far
smaller than such a scale and insufficient as opposed to the
giant chemical space of potential ILs. DL models trained on
such a limited dataset can easily get overt while generalizing
poorly on IL molecules dissimilar to the training set.

The issue of developing generalized models based on limited
datasets is not unique to molecular property prediction, but is
also encountered in natural language processing (NLP) where
there exists a vast amount of unlabeled data but only a limited
proportion of labeled data.36 To address this challenge in NLP,
researchers have made extensive efforts, including the pre-
training and ne-tuning approach.37 This approach works by
deriving word representations from statistical analysis of large
unlabeled text corpora during pre-training; the resultant pre-
trained representations provide valuable distributional infor-
mation about words that can improve the generalization of
models trained on limited labeled data via ne-tuning. The
structure of molecular sequences is inherently similar to that of
natural language sentences when molecules are represented by
the simplied molecular-input line-entry system (SMILES).38,39

Online databases like PubChem and ChEMBL contain millions
of readily accessible molecules. By leveraging such large-scale
unlabeled datasets, pre-training can enable the learning of
molecular representations, which can be subsequently ne-
tuned for downstream molecular property prediction tasks
with a smaller set of labeled data. Winter et al.40 have developed
a pre-trained sequence-to-sequence (seq2seq) model based on
recurrent neural networks (RNNs) for predicting molecular
properties. Gómez-Bombarelli et al.32 have utilized variational
autoencoders (VAEs) to obtain continuous representations of
molecules in a latent space, which are subsequently used to
predict molecular properties by decoding SMILES from the
learned representations. In addition to these approaches, the
transformer model41 that features a more parallelizable
encoder-decoder architecture (superior to the aforementioned
seq2seqmodels) has also been employed for molecular property
prediction42,43 and reaction prediction.44,45 This approach has
demonstrated higher performance on small databases than
other pre-training methods.27

As ILs are genetically distinct from conventional molecules,
molecular representations derived from conventional mole-
cules can hardly be expected to generalize well for ILs. However,
until now, DL-based IL representations have not been consid-
ered. Despite numerous ML works reported on the property
prediction of this limelighted class of molecules, these works
have generally employed traditional molecular descriptors as
input features. To bridge this gap, we propose ILTransR (IL
transfer learning of representations), a pre-training and ne-
tuning two-stage framework in this article (see Fig. 1). Impor-
tantly, ILTransR does not make use of any manually engineered
592 | Digital Discovery, 2023, 2, 591–601
molecular ngerprint. Instead, a self-attention mechanism is
used to learn the high-dimensional structure of ILs from
SMILES. First, a large (∼10 million) unlabeled SMILES dataset
specically composed of IL-like molecules is exploited for the
unsupervised pre-training of the self-attention mechanism (i.e.,
IL transformer model), obtaining the encoder-decoder archi-
tecture that can well capture the structural information of an IL
from its SMILES. Following that, the encoder of the IL trans-
former model is integrated with a convolutional neural network
(CNN) architecture for the supervised training of predictive
models of IL properties. By simply switching the labeled IL
property dataset (and concatenating other necessary inputs
such as temperature and pressure if needed), predictive models
for various IL properties can be developed based on the
proposed framework.

It is worth mentioning that very few molecular representa-
tion studies have been benchmarked with properties dependent
on temperature and/or pressure.47 In this work, based on the
modeling of eleven IL properties, we demonstrate that the
ILTransR can well handle different types of inputs namely the IL
structure and temperature and/or pressure. In comparison to
literature-reported models trained by supervised learning, the
ILTransR remarkably improves the performance in all these
benchmark cases; on some of these IL properties, our model
rivals or even exceeds the corresponding supervised learning
baselines that have not taken rigorous dataset splitting strategy.
Moreover, the one-stop ILTransR for predicting different IL
properties enables high-throughput IL screening toward
a specic task, as exemplied by the screening of the most
promising CO2 absorbents from 8 333 096 synthetically-feasible
ILs.26 Data and code involved in this work are publicly provided
online at https://github.com/GuzhongChen/ILTransR.

2 Methods
2.1 Framework of ILTransR

The ILTransR proposed in this work is developed upon a pre-
training and ne-tuning two-stage framework, wherein the
pre-training stage is inherited from the transformer architec-
ture originally constructed for neural machine translation
(NMT) tasks41 and the ne-tuning stage is evolved from the text-
CNN structure46 originally developed for sentence classication.

Like NMT tasks, the IL transformer model is trained on
a translation task from non-canonical SMILES to canonical
SMILES. It is based on the encoder-decoder architecture, which
is similar to the aforementioned seq2seq models used for
molecular property prediction43,48, and reaction prediction.44 Its
main architectural difference from the aforementioned seq2seq
models is that the RNN component is removed and it is fully
based on the attention mechanism combined with positional
embedding for encoding sequential information. A more
detailed description of the encoder-decoder architecture,
attention mechanism, and positional encoding that comprise
the building blocks of the IL transformer can be found in the
ESI (Note 1†). In this work, the IL transformer is pre-trained on
a large unlabeled SMILES database of more than 9 million IL-
like molecules.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://github.com/GuzhongChen/ILTransR
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D3DD00040K


Fig. 1 Overview of ILTransR. (a) Unsupervised pre-training of IL transformer. A large unlabeled SMILES database of IL-like molecules is taken for
unsupervised pre-training to obtain the encoder-decoder architecture. (b) Supervised training of IL property prediction model. The encoder of
the pre-trained IL transformer as learned IL representation is integrated with a CNN architecture (adding temperature/pressure in necessary
cases). (c) Detailed ILTransR architecture for IL properties prediction. After IL SMILES is encoded by the pre-trained IL transformer, the CNN
mainly uses a one-dimensional convolutional layer and a max-over-time pooling layer,46 giving rise to a fixed-length vector representation. This
IL representation (concatenated with temperature/pressure if necessary) goes through fully connected layers and converts to the output layer for
IL properties prediction.
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As different ILs have different length of SMILES, the input
size of the downstream property prediction models (the output
of the IL SMILES transformer encoder) can vary from case to
© 2023 The Author(s). Published by the Royal Society of Chemistry
case. Therefore, the convolutional neural network (CNN)
structure originally developed for sentence classication46 is
used for the downstream IL properties predictionmodel as such
Digital Discovery, 2023, 2, 591–601 | 593
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Fig. 2 Distribution of the length of canonical SMILES representations
of molecules in the IL-like dataset.
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structure can conveniently deal with distinct input lengths. The
pre-trained IL transformer is then ne-tuned for IL property
prediction by CNN (see Fig. 1c). To be specic, the encoder of
the pre-trained IL transformer is utilized to generate latent
representations of input ILs, and aerward, the CNN mainly
uses a one-dimensional convolutional layer and a max-over-
time pooling layer.46 The input of the CNN model is a matrix
of n × k, where n refers to the number of symbols in an IL
SMILES and k denotes the dimension of the vector corre-
sponding to each symbol. xi˛ℝk is used here to represent the k
dimension embedding of the ith symbol in the IL SMILES
string. On the input matrix n × k, a kernel w˛ℝhk and a window
xi:i+h−1 are used to perform convolution operations to generate
a feature ci, that is, ci = f(w$xi:i+h−1 + b). Herein, xi:i+h−1 repre-
sents a window of h × k formed by row i to row i + h − 1 of the
input matrix, which is formed by splicing xi, xi+1, ., xi+h−1; h
denotes the number of symbols in the window; w is a h × k-
dimensional weight matrix; b is the offset parameter and f is
a non-linear function; w$xi:i+h−1 is the dot product operation.
The lter is applied to the SMILES string, moving from top to
bottom one step at a time (i = 1 . n − h + 1). Each convolution
operation is equivalent to a feature vector extraction. By
dening different windows, different feature vectors can be
extracted to form the output of the convolutional layer. For the
pooling layer, this work uses max-over-time pooling, and then
the ltered largest features are spliced together to form a xed-
length vector representation.

Aer a dropout layer to deal with overtting, the pooling
result is then concatenated with other inputs (i.e., temperature
and/or pressure if necessary) for IL properties prediction.
Finally, the data go through fully connected layers and convert
to the one-neuron output layer for the prediction of IL proper-
ties. It is worth noting that as the prediction of the eleven IL
properties involved in this work are all regression problems,
only one neuron is needed in the output layer here; if there are
IL related classication or multiple regression problems, one
can also easily set the output layer neurons to the required
number.
2.2 Datasets

For pre-training the IL transformer of ILTransR, the PubChem48

compound database (p://p.ncbi.nlm.nih.gov/pubchem/
Compound/) is used. The original database contains a total of
108 923 995 molecules along with their canonical SMILES
representations. Due to the limited memory size of the
computer used, we cannot do the pre-training on the entire
PubChem compound database. Therefore, considering the aim
of learning IL representation, only the molecules containing ‘+’
and/or ‘−’ symbols in the SMILES are rst screened to form
a subset of IL-like molecules, retaining 10 243 410 structures. As
illustrated in Fig. 2, 92.10% of IL-like molecules in the subset
has SMILES strings with less than 100 characters. To avoid
excessively long input length for the model, only molecules with
SMILES strings of length less than or equal to 100 characters are
used to form the pre-training dataset (retaining 9 434 070
structures). This dataset is then augmented 10-fold (as
594 | Digital Discovery, 2023, 2, 591–601
recommended by Tetko et al.49) using the SMILES enumerator to
enhance the performance of DNN models that can be devel-
oped, resulting in a total of 94 340 700 non-canonical SMILES
strings.50

For the ne-tuning of ILTransR, the datasets of eleven IL
properties benchmarked in this work are derived from several
recent refs. 20–22, 24–26 and 51 as listed in Table 1. From these
datasets, only ILs with SMILES string length less than or equal
to 100 characters (consistent with the pre-training dataset) are
kept.
2.3 Implementation details

This work applies RDKit (https://www.rdkit.org) for processing
IL SMILES and for generating canonical SMILES used in the
pre-training. For the implementation and training of the
proposed ILTransR, the MXNet library52 with GPU acceleration
(on a single RTX2080Ti and CUDA 10.1) and GluonNLP toolkit53

are employed.
2.3.1 Pre-training. To use SMILES representations as the

input and output of the IL transformer in ILTransR, the SMILES
strings are tokenized into characters and encoded in a one-hot
vector representation. According to Tetko et al.49 for the
combined IL transformer and CNN model structure applied in
this research, employing a more complex atom-wise tokenizer
does not signicantly improve the prediction accuracy of the
model. In this work, the character-level tokenization40,42 is used
for the sake of model simplication where every single char-
acter appearing in the SMILES is tokenized separately. The
vocabulary is built by using the MXNet library55 and the
GluonNLP toolkit,56 which contain all 71 possible characters in
the SMILES of 9 434 070 molecules in the pre-training dataset.
The characters as well as their indexes in the vocabulary are
detailed in the ESI (Note 3†).

Considering the much smaller vocabulary required and the
less complicacy of the SMILES canonicalization task than
common NMT tasks, the numbers of transformer blocks, heads
in multi-head attention, and units for the output are decreased
from 6, 8 and 512 to 3, 4 and 128, respectively, with reference to
the original paper.39 Identical to the original paper, a dropout
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 IL properties involved in this work

Property
Number of data
points

Number of
ILs Data source

Melting point Tm(K) 2212 2212 Low et al.20

Glass transition temperature Tg(°C) 609 609 Venkatraman et al.25

Thermal decomposition temperature Td(°C) 1223 1223 Venkatraman et al.25

Heat capacity ln(Cp) 9083 236 Venkatraman et al.25

Refractive index nD 3009 464 Venkatraman et al.25

Density r 31 167 2257 Paduszyński21

Viscosity ln(h) 15 368 1964 Paduszyński24

Surface tension g 2972 331 Venkatraman et al.25

CO2 solubility xCO2
10 116 124 Song et al.22

Cytotoxicity towards the leukemia rat cell line IPC-81 log10(EC50) 326 326 Wang et al.51

Thermal conductivity l 454 73 Venkatraman et al.26
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rate of 0.1 is set for model regularization. The IL transformer is
trained for 10 epochs by Adam optimizer57 with a base learning
rate of 0.001. Aer four epochs of training, the learning rate is
multiplied by a factor of 0.5 for each epoch.

The masked somax cross entropy loss41 is used as the loss
function for pre-training, which is implemented by the
gluonnlp.loss.MaskedSomaxCELoss() function. From the pre-
training dataset aer augmentation (containing 94 340 700
SMILES), 100 000 and 100 000 SMILES are randomly split to
form the validation set and test set, while the rest of the pre-
training dataset is kept as the training set.

2.3.2 Fine-tuning. To ne-tune the ILTransR for IL prop-
erties prediction, the eleven IL property datasets are utilized to
train eleven sets of weights of the same CNN structure, while the
weights of the pre-trained IL transformer encoder are frozen. In
the ne-tuning, the rigorous dataset splitting strategy according
to involved ILs is adopted and 10-fold cross-validations (CVs) on
each of the eleven datasets are carried out to determine the
model hyperparameters (i.e., dropout rate and the size of fully
connected layers). The mean squared error (MSE) (L2 loss) is
used as the loss function for all the eleven IL properties.
Optimal values of the hyperparameters are obtained by exten-
sive grid search (output size of fully connected layer: 128, 256,
512, 1024; dropout rate: 0.05, 0.1, 0.3, 0.5, 0.7).
3 Results and discussion
3.1 Performance of ILTransR

To evaluate the effectiveness of the IL transformer model, two
standard evaluation metrics are utilized. The rst metric is the
bilingual evaluation understudy (BLEU) score,54 a standard
measure used to assess the similarity between a given trans-
lation (i.e., the output canonical SMILES generated by the IL
transformer model) and the reference translation (i.e., the
original canonical SMILES). The second metric is the trans-
lation accuracy, which is calculated based on the number of
perfect matches between the predicted and actual canonical
SMILES. As illustrated in Fig. S2 (ESI Note 2†), the results of
both metrics indicate that the pre-trained SMILES transformer
model is highly effective in capturing key molecular features
from IL SMILES.
© 2023 The Author(s). Published by the Royal Society of Chemistry
The performance of the proposed ILTransR for predicting IL
properties is benchmarked on eleven different IL properties and
compared with the state-of-the-art models in
literature.20–22,24–26,51 The involved properties of ILs can be
divided into two types. One type is the properties related only to
IL molecular structure namely melting point (Tm), glass tran-
sition temperature (Tg), thermal decomposition temperature
(Td), and cytotoxicity towards the leukemia rat cell line IPC-81
(log10EC50). The second type relates to not only IL molecular
structure but also conditions such as temperature and/or
pressure, including heat capacity (Cp), refractive index (nD),
density (r), viscosity (h), surface tension (g), CO2 solubility
(xCO

2
), and thermal conductivity (l). To make a fair compar-

ison, this work trains ILTransR on the same IL properties
datasets as used in the corresponding references. Moreover, it
should be noted that the random splitting of the entire dataset
as adopted in the references may cause overestimation of
models by separating data points of the same ILs (with only
difference in temperature and/or pressure) into both the
training and test sets when dealing with the second type of IL
properties. That is to say, data points of the same IL under
different temperature and/or pressure conditions are likely to
be distributed into both the training and test sets, leading to
data leakage. Therefore, in such benchmark cases, two different
dataset split strategies are also compared: one is the random
split of all data points and the other is the more rigorous split of
data points according to different ILs. By using the second
strategy, data points of the same IL at different temperatures
and pressures can only enter the same subset during the split-
ting of training and test sets, which can avoid data leakage and
give an unbiased test score.

The comparative results for the eleven IL properties are
summarized in Table 2. As can be seen, for the four properties
related only to the molecular structure of ILs (namely Tm, Tg, Td,
and log10EC50), the prediction error (MAE) of the proposed
ILTransR is all notably lower than that of the reference models
in the literature, decreasing by 62.56%, 43.58%, 23.24%, and
41.81%, respectively. These results demonstrate that the
ILTransR is able to extract the molecular representations of ILs
better than the various descriptors used in the literature,
especially when the database of IL properties is limited. For the
Digital Discovery, 2023, 2, 591–601 | 595
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Table 2 Comparison of the models reported in literature with the proposed ILTransR method in the benchmarks of eleven IL properties. The
same train/test set split ratio is adopted here as used in the cited studies

Property
Number of data
points

Number of
ILs Descriptor Method

Test MAE (split
by data points)

Test MAE (split
by ILs) Source

Tm(K) 2212 2212 ECFP4 and CM KRR — 29.78 Low et al.20

ILTransR — 11.15 This work
Tg(°C) 609 609 Charge distributions and geometrical

indices
Cubist — 12 Venkatraman et al.25

ILTransR — 6.77 This work
Td(°C) 1223 1223 Charge distributions and geometrical

indices
RF — 25 Venkatraman et al.25

ILTransR — 19.19 This work
ln(h) 15 368 1964 Group contributions LSSVM 0.42 — Paduszyński24

ILTransR 0.17 0.35 This work
r 31 167 2257 Group contributions LSSVM 29.76 — Paduszyński21

ILTransR 12.31 16.46 This work
ln(Cp) 9083 236 Charge distributions and geometrical

indices
GBM 0.19 — Venkatraman et al.25

ILTransR 0.18 0.28 This work
g 2972 331 Charge distributions and geometrical

indices
GBM 0.0027 — Venkatraman et al.25

ILTransR 0.0014 0.0030 This work
nD 3009 464 Charge distributions and geometrical

indices
GBM 0.011 — Venkatraman et al.25

ILTransR 0.0047 0.015 This work
xCO

2
10 116 124 Group contributions SVM 0.024 — Song et al.22

ILTransR 0.022 0.057 This work
log10EC50 326 326 Structural descriptors SVM — 0.1935 Wang et al.51

ILTransR — 0.1126 This work
l 454 73 Charge distributions and geometrical

indices
GBM 0.009 — Venkatraman et al.26

ILTransR 0.0034 0.0061 This work
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second type properties that are also related to temperature and/
or pressure (namely Cp, nD, r, h, g, xCO2

, and l), the ILTransR
outperforms all the reference models when adopting the
random dataset splitting by data points, with an improvement
ratio ranging from 5.26% for Cp to 62.22% for l. Notably, the
ILTransR still has comparable and even lower MAE (for the
properties of r, h, and l) on the test set rigorously split by ILs
than the reference models do on the test set split non-rigorously
by data points. This comparison proves that, in addition to
more informative IL representations, the ILtransR can well
handle different types of input via the CNN structure, leading to
higher prediction accuracy as opposed to the reference models.
It should be mentioned that some of the above references have
also tried to use neural network methods in their model
development; however, the neural network methods con-
structed in these references cannot achieve better prediction
accuracy compared with the models listed in Table 2. The
reason is that the size of most of such IL properties datasets is
not large enough to train a neural network model with a high
enough prediction accuracy, leading to the nal selection of
other statistical ML methods as the best model in the
references.

To show the predictive performance of the proposed
ILTransRmore vividly, the r, h, and log10EC50 of ILs are taken as
examples to inspect the model test results in more detail. As
596 | Digital Discovery, 2023, 2, 591–601
seen in Fig. 3a–c, the test set points of each fold in the 10-fold
cross-validation for the r, h, and log10EC50 are distributed
almost evenly in a close region around the diagonal in the parity
plot. These examples prove that the ILTransR can well predict
different types of IL properties by ne-tuning on the corre-
sponding IL properties dataset based on the IL representation
learned by the pre-trained transformer encoder. To further
illustrate that the ILTransR can well handle different inputs for
IL property prediction, 1-hexyl-3-methylimidazolium bistri-
amide ([C6C1Im][NTf2]) is selected as a representative to
examine its predicted h-T and r-T–P relationship. As seen in
Fig. 3d, the ILTransR model provides very satisfactory predic-
tion for the density of [C6C1Im][NTf2] as compared to the
experimental data over a wide temperature and pressure range
(up to T = 450 K and P = 200 MPa, respectively). As for the
viscosity of [C6C1Im][NTf2], the predictions by the ILTransR well
resemble the experimental data over a wide range of tempera-
ture (Fig. 3e). It is worth mentioning that very few previously-
reported ML models have scrutinized whether the tempera-
ture and/or pressure dependence of such IL properties could be
correctly captured.

To gain more insight into the performance of the ILTransR,
IL density is again selected as a representative to analyze the
model predictions for each possible combination of cation and
anion families. Corresponding AARE values are obtained by
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Performance of ILTransR for IL property prediction. (a) Density. (b) Viscosity. (c) Cytotoxicity. (d) Density of [C6C1Im][NTf2] as a function of
temperature and pressure. (e) Viscosity of [C6C1Im][NTf2] as a function of temperature. (f) Average absolute relative errors (AAREs) between
experimental and predicted density for different cation–anion combinations. Empty cell means that experimental data have not been available
yet.
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Fig. 4 High-throughput screening of ILs as CO2 absorbent aided by the ILTransR. (a) Scatter plot of all ILs in terms of potential absorption and
desorption performance. ILs that meet all four physical property constraints are marked as red star. (b) Molecular structures of the eight ILs
retained finally. The string under the structure denotes the ID of IL in the initial database.
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averaging the test set results in the 10-fold cross-validation. As
shown in Fig. 3f, the AAREs for most of the involved anionic and
cationic combinations are below 5%, which again proves that
the ILTransR has a high prediction accuracy for IL density.
Moreover, such prediction accuracy is found to be dependent
on the moieties forming IL. For instance, the AAREs for the
imidazolium-based ILs are all lower than 5%, with 13 of the 15
anionic families below 3%; low AAREs are also observed for
carboxylates ILs, except that the paired cationic moiety is gua-
nidinium. The highest AARE of 15.4% is obtained for the
combination of cyclic sulfonium cations and common inor-
ganics, as this combination only appears once in the entire
dataset (the density prediction in this case in cross-validation is
fully extrapolated). To wrap up, the detailed analyses of the
density prediction well demonstrate that the ILTransR could
reasonably predict IL properties for different IL families.
3.2 Application example of ILTransR: CO2 absorbent
screening

From the ILTransR obtained above, the eleven IL properties can
be reliably and quickly predicted, allowing for many model
applications such as the high-throughput IL screening toward
different processes. Herein, the screening of ILs as CO2 absor-
bent is presented as an illustrative case study.

When screening ILs for CO2 capture, a set of thermodynamic
and physical properties of ILs are of great importance. The
capacity of IL to absorb CO2 can be evaluated by the gas solu-
bility in ILs at the desired absorption temperature, while the
desorption performance of IL can be estimated by the difference
in the CO2 solubility at the desired absorption temperature and
desorption temperature, respectively. The melting point,
viscosity, thermal decomposition temperature, toxicity, and
heat capacity of ILs should be considered as constraints
because all these properties determine the feasibility and suit-
ability of ILs as absorbents.55–57 To be specic, the melting point
limits the lowest absorption temperature of ILs as liquid CO2

absorbents; the thermal decomposition temperature limits the
highest temperature for CO2 desorption; the energy consump-
tion of solvent regeneration can be assessed from the heat
capacity of IL; the toxicity is a key factor related to the potential
EHS impacts of ILs. All the above properties can be covered by
the ILTransR developed in this work.

In this case study, a virtual library of 8 333 096 (219 216
cations combined with 38 anions) synthetically feasible ILs as
suggested by Venkatraman et al.26 is used as the initial candi-
date database. By using the ILTransR, the xCO

2
of ILs at 298 K

and 328 K (P = 1 bar) are calculated for evaluating the absorp-
tion and desorption performance of ILs; Cp, Tm, log10EC50, h,
and Td under 1 bar and 298 K are also predicted. As the calcu-
lation speed of the ILTransR is very fast, a database of the seven
properties for all the 8 333 096 candidate ILs is obtained in only
around 14 hours (2 hours per property for all the 8 333 096
candidate ILs) on a laptop equipped with an RTX3070 GPU.
Applying the constraints namely Tm < 298 K, Td > 150 °C,
log10EC50 > 3, and h < 100 mPa s, a high-throughput screening
over the entire IL database is performed, which retains 18 ILs
© 2023 The Author(s). Published by the Royal Society of Chemistry
meeting all the four constraints (as illustrated in Fig. 3a, see
detailed information of these ILs in Table S1 in ESI Note 4†).
Among them, eight ILs are basically located on the pseudo
pareto front of all the candidate ILs in terms of the potential
absorption and desorption performance. It should be noted
that the four ILs in the lower right corner of Fig. 4a are excluded
due to very low solubility of CO2 at the absorption temperature.

The molecular structures of the eight retained ILs are shown
in Fig. 3b with their predicted properties of them tabulated in
Table S1 in ESI Note 4.† These eight ILs are highly worth
investigating in future studies as they are survivals from 8 333
096 candidates. It is worth mentioning that this case study is for
the rst time that such a huge database of ILs is considered for
a high-throughput solvent screening toward a specic process,
which benets from both the high prediction accuracy and fast
calculation speed of the ILTransR.
4 Conclusion

In this work, we propose a pre-training and ne-tuning para-
digm entitled ILTransR to generalize IL property prediction
from limited labeled data. The ILTransR utilizes the power of
unlabeled molecular data from a large-scale (9 434 070 IL-like
molecules) pre-training through a translation task of non-
canonical SMILES to canonical SMILES, and then can be
easily ne-tuned on labeled IL properties datasets using CNN
architecture. In experiments on eleven benchmark datasets of
diverse IL properties, the proposed ILTransR surpasses all state-
of-the-art ML models in literature, showing that not only better
IL representations are learned but also different types of input
features are well handled.

The ILTransR provides a one-stop solution to accurately
predict general properties of ILs, which could guide through the
large IL chemical space even only limited labeled data are
currently available. As an example, a high-throughput screening
of CO2 absorbents from an enormous virtual library of 8 333 096
synthetically feasible ILs is performed, which identies eight
promising ILs based on calculating seven different properties by
ILTransR. Moving beyond, it is highly expected that the
proposed ILTransR could be a revolutionizing tool for the whole
IL community for the quick discovery of the best candidate
toward a specic task.
Code availability

The code accompanying this work is available in the GitHub
repository at https://github.com/GuzhongChen/ILTransR.
Data availability

The pre-training data can be downloaded from PubChem at
p://p.ncbi.nlm.nih.gov/pubchem/Compound/ and can be
processed using the code provided. The eleven IL property
datasets used as benchmarks are available at https://
github.com/GuzhongChen/ILTransR.
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