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ural network force-field for the
periodic table: solid state applications

Kamal Choudhary, *ab Brian DeCost, c Lily Major, de Keith Butler, e

Jeyan Thiyagalingam e and Francesca Tavazza c

Classical force fields (FFs) based on machine learning (ML) methods show great potential for large scale

simulations of solids. MLFFs have hitherto largely been designed and fitted for specific systems and are

not usually transferable to chemistries beyond the specific training set. We develop a unified atomisitic

line graph neural network-based FF (ALIGNN-FF) that can model both structurally and chemically diverse

solids with any combination of 89 elements from the periodic table. To train the ALIGNN-FF model, we

use the JARVIS-DFT dataset which contains around 75 000 materials and 4 million energy-force entries,

out of which 307 113 are used in the training. We demonstrate the applicability of this method for fast

optimization of atomic structures in the crystallography open database and by predicting accurate crystal

structures using a genetic algorithm for alloys.
Introduction

Large scale atomistic simulation of multi-component systems is
a difficult task but they are highly valuable for industrial
applications such as designing alloys, designing electrical
contacts, touch screens, transistors, batteries, composites and
catalysts.1–4 Quantum chemistry methods, such as density
functional theory, are obvious approaches to simulate such
systems; however, they are computationally very expensive for
large systems.5 Classical force-elds, or interatomic potentials,
such as the embedded-atom method (EAM),6–8 the modied
embedded-atom method (MEAM), reactive bond-order
(ReaxFF), charge-optimized many-body (COMB), etc.,9–13 can be
used for such simulations, but they are usually parameterized
for a very narrow chemical phase-space limiting their applica-
bility and transferability. Moreover, it can be quite strenuous
and time consuming to develop such traditional classical FFs.

Recently, machine learning based FFs14,15 have been used to
systematically improve the accuracy of FFs and have success-
fully been used for multiple systems. One of the pioneer MLFFs
were developed by Behler–Parinello in 2007 using a neural
network.16 It was initially used for molecular systems and now
has been extended to numerous other applications.17 Although
a neural network is one of the most popular regressors, other
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methods such as Gaussian process-based Gaussian approxi-
mation potential (GAP),18 as well as linear regression and basis
function-based spectral neighbor analysis potential (SNAP)19

have also been thoroughly used. Such FFs use two and three
body descriptors to describe the local environment. Other
popular MLFF formalisms include smooth overlap of atomic
positions (SOAP),20 moment tensor potential (MTP),21,22

symbolic regression23 and polynomial-based approaches.24 One
of the critical issues in developing and maintaining classical
force-elds is that they are hard to update with soware and
hardware changes. Luckily, MLFFs are more transparently
developed and maintained compared to other classical FFs. A
review article on this topic can be found elsewhere.17 Never-
theless, early-generation MLFFs are also limited to a narrow
chemical space andmay require hand-craed descriptors which
may take time to be identied. Conventional MLFFs are usually
trained on specic chemistry only as the number of parameters
(cross-terms) exponentially increases with the number of
elements in the system. This is where GNN based methods can
be particularly useful for generalizability. We note that the
number of model parameters do not scale explicitly with the
number of elements, because there are no explicit cross-terms
for interactions between different pairs of chemical species.
Moreover, the model does not require retraining for new
systems. So it could be shared and many researchers can make
use of pre-trained models.

Graph neural network (GNN) based methods have shown
remarkable improvements over descriptor based machine
learning methods and can capture highly non-Euclidean
chemical space.15,25–33 GNN FFs have been also recently
proposed and are still in the development phase.34,35 We
developed an atomistic line graph neural network (ALIGNN) in
© 2023 The Author(s). Published by the Royal Society of Chemistry
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our previous work36 which can capture many body interactions
in graph and successfully models more than 70 properties of
materials, either scalar or vector quantities, such as formation
energy, bandgap, elastic modulus, superconducting properties,
adsorption isotherm, electron and density of states etc.36–41 The
same automatic differentiation capability that allows training
these complex models allows for physically consistent predic-
tion of quantities such as forces and energies; this enables
GNNs to be used in quickly identifying relaxed or equilibrium
states of complex systems. However, there is a need for a large
and diverse amount of data to train unied force-elds.

In this work, we present a dataset of energy and forces with 4
million entries for around 75 000 materials in the JARVIS-DFT
dataset which have been developed over the past 5 years.42 We
extend the ALIGNN model to also predict derivatives that are
necessary for FF formalism. There can be numerous applica-
tions of such a unied FF; however, in this work we limit
ourselves to pre-optimization of structures, genetic algorithm
based structure, and molecular dynamics applications. The
developed model will be publicly available on the ALIGNN
GitHub page (https://github.com/usnistgov/alignn) with several
examples and a brief documentation.

Methodology

A ow-chart for training an ALIGNN-FF is shown in Fig. 1a. To
train the FF, we use a large DFT dataset, JARVIS-DFT, which
contains about 75 000 materials with a variety of atomic struc-
tures and chemistry and has been generated over the last 5
years. JARVIS-DFT is primarily based on Vienna Ab initio
Simulation Package (VASP)43,44 soware and the OptB88vdW45

functional but also contains data obtained using other
Fig. 1 Schematic showing a flow chart for developing the force-field, vi
The left panel (a) shows how the dataset was obtained from JARVIS-DFT a
the dataset. While the energy dataset ranges from−9.98 to 9.97 eV and is
591.40 eV Å−1 and is highly localized around zero. The force-dataset con
predictions on the test set.

© 2023 The Author(s). Published by the Royal Society of Chemistry
functionals and methods. In this work, only OptB88vdW-based
data have been used. The OptB88vdW functional was shown to
be very well applicable to solids in ref. 45 and, ever since, it has
been used to model rare-gas dimers and metallic, ionic, and
covalent bonded solids, polymers, and small molecular
systems.46 Energies and forces are available for each structure
optimization and elastic constant calculation runs. The total
number of such entries is around 4 million. Although it would
be justied to train on the entire dataset, we choose to use only
a subset of it because of the computational budget and hard-
ware requirements available to us. Instead of the 4 million
datapoints, we use 307 113 points i.e. more than an order of
magnitude less, by taking a unique set of rst, last, middle,
maximum energy and minimum energy structures only. If some
snapshots for a run are identical, say the last step and the
minimum energy conguration are the same, then we only
include one of them. The dataset consists of perfect structures
only.

We convert the atomic structures to a graph representation
using an atomistic line graph neural network (ALIGNN). Details
on the ALIGNN can be found in the related paper.36 In brief,
each node in the atomistic graph is assigned 9 input node
features based on its atomic species: electronegativity, group
number, covalent radius, valence electrons, rst ionization
energy, electron affinity, block and atomic volume. The inter-
atomic bond distances are used as edge features with a radial
basis function up to an 8 Å cut-off. We use a periodic 12-nearest-
neighbor graph construction. This atomistic graph is then used
for constructing the corresponding line graph using inter-
atomic bond-distances as nodes and bond-angles as edge
features. The ALIGNN uses edge-gated graph convolution for
sualization of available data and model performance on a test dataset.
ndmodel was trained. (b) and (c) show energy and force-distribution in
well-dispersed over this range, the force dataset varies from−591.12 to
tains the x, y, z forces on each atom. (d) and (e) show energy and force

Digital Discovery, 2023, 2, 346–355 | 347
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Table 1 Effect of different weighting factors for energy and force
predictions

Weight
MAE-Energies
(eV per atom)

MAE-Forces
(eV Å−1)

0.1 0.034 0.092
0.5 0.044 0.089
1.0 0.051 0.088
5.0 0.082 0.054
10.0 0.086 0.047
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updating nodes as well as edge features. One ALIGNN layer
composes an edge-gated graph convolution on the bond graph
with an edge-gated graph convolution on the line graph. The
line graph convolution produces bond messages that are
propagated to the atomistic graph, which further updates the
bond features in combination with atom features.

In this work, we developed the functionality for atomwise
and gradient predictions in the ALIGNN framework. Quantities
related to gradients of the predicted energy, such as forces on
each atom, are computed by applying the chain rule through the
automatic differentiation system used to train the GNN.
Usually, MLFF datasets are not transferable. We share a large
dataset of energy and forces (available on the Figshare reposi-
tory: https://doi.org/10.6084/m9.gshare.21667874), which can
be used for other applications as well. Importantly, this
dataset is continuously expanding, making it very systematic
and transferable across multiple elements and their
combinations. In a closed system, the forces on each atom i
depend on its position with respect to every other particle j
through a force-eld as:

mi

d2riðtÞ
dt2

¼
X

j

FijðtÞ ¼ �
X

j

ViU
�
rijðtÞ

�
(1)

where rij is the distance between atom i and j. For stress
predictions, we use Virial stress,47 which is a measure of
mechanical stress on an atomic scale for homogeneous
systems:

sab ¼ � 1

V

X

i

X

isj

Fij
arij

b þmivi
avi

b (2)

The 307 113 data points are split into a 90 : 5 : 5 ratio for
training, validation and testing. We train the model for 250
epochs using the same hyper-parameters as in the original
ALIGNN model.36 The ALIGNN is based on deep graph library
(DGL),48 PyTorch49 and JARVIS-Tools packages.42 We optimize
a composite loss function (l) with weighted mean absolute error
terms for both forces and energies:

l ¼ ��EDFT � EGNN
��þ w

XNatoms

i

��FDFT
i � FGNN

i

�� (3)

where EDFT and EGNN are energies per atom using DFT and
ALIGNN, Fi

DFT and Fi
GNN are forces acting on an atom using DFT

and ALIGNN, and w is a tunable weighting factor scaling the
force contribution to the loss relative to the energies; in this
work we set w = 10. Without such weighting, it is difficult to
learn forces as they vary within a wide range. All the DFT data
were obtained from the JARVIS-DFT dataset which uses VASP
calculations with an OptB88vdW functional.

The ALIGNN-FF model has been integrated with an atomic
simulation environment (ASE)50 as an energy, force and stress
calculator for structure optimization and MD simulations. This
calculator can be used for optimizing atomic structures using
a genetic algorithm,51 and running molecular dynamics simu-
lations, for example constant-temperature, constant-volume
ensemble (NVT) simulations. The structural relaxations are
348 | Digital Discovery, 2023, 2, 346–355
carried out with the fast inertial relaxation engine (FIRE),52

available in ASE. In order to predict the equation of state/
energy–volume–curve (EV) simulation, we apply volumetric
strains in the range of −0.1 to 0.1 with an interval of 0.01.
Although the current implementation is in ASE only, we plan to
implement this FF in high-performance MD codes such as
LAMMPS53 in the future which can provide signicantly better
performance.
Results and discussion
Performance on a test set

We nd that the energy per atom dataset (with 307 113 entries)
varies from −9.98 eV per atom to 9.97 eV per atom. The force
dataset containing 9 593 385 entries (resulting from x, y, z
forces on each atom) is mostly centered around zero, but
ranges from −591.12 eV Å−1 to 591.40 eV Å−1. The mean
absolute deviation (MAD) for energies and forces are 1.80 eV
and 0.10 eV Å−1 respectively. The distributions of the energy
and force used in training are shown in Fig. 1b and c,
respectively. The total dataset was split in 90 : 5 : 5 train-
validation-test sets. We show the performance on a test set
for energies and forces in Fig. 1d and e respectively. We note
that these points represent a variety of chemistries and
structures unlike usual MLFFs which are usually focused on
a specic chemistry. The mean absolute error (MAE) of the
predicted energy per atom and force component per atom are
0.086 eV and 0.047 eV Å−1 respectively. In comparison to the
previous ALIGNN model for energy only, which has an MAE of
0.03 eV per atom, 0.086 eV per atom might seem high;
however, we note that the previous energy model was trained
on relaxed structures only while the current model also
captures several un-relaxed structures which can be much
higher in energy scale. The MAD : MAE ratios for energies and
forces are 20.93 and 2.12, which are high.

While the above results are for a force tunable weighting
factor of 10, we also train the models with other weighting
factors as shown in Table 1. We nd that as we increase the
weighting factors, the MAEs increase for increase in energies
but decrease for forces. As the MAD for forces is 0.1 eV Å−1, we
choose to work with the model obtained for the lowest MAE for
forces and to analyze its applications in the rest of the paper.
Nevertheless, we share model parameters for other weighting
factors for those interested in analyzing its effect on property
predictions.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Energy–volume curves

The energy–volume (E–V) curves are crucial to understand the
behavior of an FF. We obtain EV-curves for a few test case
materials by applying volumetric strains in the range of −0.1 to
0.1 with an interval of 0.01. Specically, we compare the energy
volume curves for Ni3Al (JVASP-14971), Al2CoNi (JVASP-108163),
CrFeCoNi (4 atom cell with spacegroup number 216 and
a lattice parameter of 4.007 Å), NaCl (JVASP-23862), MgO (JVASP-
116), and BaTiO3 (JVASP-8029) using the EAM potential,7,8 GPAW
DFT,54 and ALIGNN-FF, as shown in Fig. 2. The energy scales for
these methods differ, so we align them with respect to the cor-
respondingminimumenergies, for comparison.We used less EV-
curve points for a structure in GPAW to save computational cost.
We notice that all the EV-curves are parabolic in nature and
smooth, indicating a smooth potential energy surface.

We nd that the EV curves from these methods coincide near
the minimum for all systems but for Al2CoNi and CrFeCoNi, the
GPAW equilibrium volume is slightly smaller than that for the
EAM and ALIGNN-FF, suggesting that the lattice constants for
the ALIGNN-FF and EAM might be overestimated compared to
those for GPAW. Nevertheless, EAM and ALIGNN-FF data agree
well. Comparing the EAM and ALIGN-FF, it's important to
remember that GNNs have no fundamental limitation to the
number of species they can model (i.e. high chemical diversity),
and can, in principle, even extrapolate to species not contained
in the training set, which is extremely powerful compared to
conventional FFs like the EAM.

Note that there are many other conventional FF repositories
available (such as the Inter-atomic Potential Repository55 and
Fig. 2 Energy–volume/expansion–contraction curves for a few example
BaTiO3 with ALIGNN-FF, EAM force-fields and VASP DFTmethods. We ap
For DFT (VASP) calculations, we use an interval of 0.05. Note that energy

© 2023 The Author(s). Published by the Royal Society of Chemistry
JARVIS-FF56) which contain data for a variety of systems. It is
beyond the scope of the current work to compare all of them
with the ALIGNN-FF; however, it would be an interesting effort
for future work.

While the above examples are for individual crystals, it is
important to distinguish different polymorphs of a composition
system for materials simulation (i.e. structural diversity). As
shown in Fig. 3, we analyze the energy–volume (EV) curve of four
systems and their polymorphs using the ALIGNN-FF. We choose
four such example systems because they are representative of
different stable structures. In general, however, the EV-curve
can be computed for any arbitrary system and structure. In
Fig. 3a, we show the EV-curve for 4 siliconmaterials (JARVIS-IDs:
JVASP-1002, JVASP-91933, JVASP-25369, and JVASP-25368) with
diamond cubic correctly being the lowest in energy. Similarly,
the EV-curve for naturally prevalent SiO2 systems (JARVIS-IDs:
JVASP-58349, JVASP-34674, JVASP-34656, and JVASP-58394),
binary alloy Ni3Al (JARVIS-IDs: JVASP-14971, JVASP-99749, and
JVASP-11979) and vdW bonded material MoS2 (JARVIS-IDs:
JVASP-28733, JVASP-28413, and JVASP-58505) all have the
correct structure corresponding to the minimum energy.
Therefore, while the MAE for our overall energy model is high,
such a model is able to distinguish polymorphs of compounds
with meV level accuracy which is critical for atomistic
applications.
Lattice constants and formation energies

In this section, we compare the lattice constants and formation
energies for elemental and multi-component solids from the
systems: (a) Ni3Al, (b) Al2CoNi, (c) CrFeCoNi, (d) NaCl, (e) MgO, and (f)
ply volumetric strains in the range of−0.1 to 0.1 with an interval of 0.01.
–volume curves were not explicitly included during the model training.

Digital Discovery, 2023, 2, 346–355 | 349
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Fig. 3 Energy–volume/expansion–contraction curves for a few example systems: (a) silicon, (b) SiO2, (c) Ni3Al, and (d) MoS2 polymorphs. We
optimize the structures and then apply volumetric strains in the range of −0.05 to 0.05 with an interval of 0.01.
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JARVIS-DFT aer optimizing them using the ALIGNN-FF as
shown in Fig. 4a–d. For the ALIGNN-FF we choose solids with
less than 10 atoms in a cell from the JARVIS-DFT database. We
optimize 23 495 such materials, and present the results in
Fig. 4a–d. The formation energies require the chemical poten-
tial of elemental systems. The energies per atom of elemental
solid systems with minimum energy are used as chemical
potentials. We optimize the lattices with the FIRE algorithm as
implemented in ASE and nd reasonable agreement between
the DFT and ALIGNN-FF lattice constants. TheMAE for a, b, and
c lattice constants are 0.11, 0.11 and 0.13 Å respectively. The
mean absolute error (MAE) for formation energies between
ALIGNN-FF and JARVIS-DFT is 0.08 eV per atom which is
reasonable for pre-screening applications. Note that the above
validation is different from the performance measurement in
Fig. 1 for the 5% test dataset because we optimize the crystals
rather than directly predicting the formation energies on
unrelaxed structures. Similarly, we apply the ALIGNN-FF on the
crystallography open database (COD). The COD contains more
than 431 778 atomic structures with different types of chemical
bondings and environments. We optimize 34 615 structures in
the CODwith the number of atoms in a cell less than 50, and the
results are shown in Fig. 4e–h. Here, we nd the MAE or a, b,
and c lattice parameters to be 0.20, 0.20 and 0.23 Å, respectively.
Most of the systems in the COD have been derived from
350 | Digital Discovery, 2023, 2, 346–355
experiments, and hence we see many of them have negative
formation energies as shown in Fig. 4h.
Genetic algorithm based structure search

Computational prediction of the ground-state structures of
a chemical system is a challenging task. Some of the common
methods for this task include genetic algorithm (GA), simulated
annealing and basin or minima hopping.57 In the following
examples, we show the use of GA together with the ALIGNN-FF
to search for crystal structures of Ni–Al and Cu–Al example
systems. Genetic algorithms mimic the biological evolution
process to solve optimization problems. A GA optimization
consists of (1) inheritance, (2) mutation, (3) selection, and (4)
crossover operations to produce new structures and search for
better survivors from generation to generation based on the
“survival of the ttest” idea which in our case would be ener-
getics criteria. While all GAs follow a similar strategy, the details
of the individual operations can vary a lot from problem to
problem and can be critical to search efficiency. We start with
face-centered cubic (FCC) structures of the individual compo-
nents (FCC Al (JVASP-816) and FCC Ni (JVASP-943) for Ni–Al
search and FCC Al and FCC Cu (JVASP-867) for Cu–Al search) as
the initial population. We perform relaxation of these systems
with the ALIGNN-FF. We choose a population size of 10 indi-
viduals and create the initial population by randomly selecting
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Comparison of DFT and FF data for the (a) lattice constant in the x-direction, (b) lattice-constant in the y direction, (c) lattice constant in
the z-direction, and (d) formation energies for stable binary solids in JARVIS-DFT. Comparison of crystallography open database (COD) and FF
lattice constants in the (e) x-direction, (f) y-direction, (g) z-direction and (h) formation energy distribution.
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the elements. We use 40 generations to evolve the system and
store the entries which are also relaxed with the ALIGNN-FF.

Aer this example GA search for structures, we plot the
convex hull diagram of these systems, as shown in Fig. 5. We
nd that the GA predicts AB and A3B compounds which are in
fact observed experimentally in such binary alloys.51,58 Addi-
tionally, Ni3Al (spacegroup: Pm�3m) is known to be one of the
best performing super-alloys51 which is reproduced in the above
example. We also found that the formation energy of this
structure (−0.47 eV per atom) is similar to Johannesson's51

ndings of −0.49 eV per atom. Although the above example is
carried out for binary systems, in principle, the same method-
ology can be applied for any other system as well.
Fig. 5 Convex hulls obtained from a genetic algorithm search for alloys s
fraction of the corresponding element. We show the stable structures o

© 2023 The Author(s). Published by the Royal Society of Chemistry
Timing study

Now, we compare the time for a single step potential energy
calculation for FCC aluminum (JVASP-816) with varied supercell
sizes with EAM, ALIGNN-FF and GPAW DFT54 methods. All of
these calculations are performed on the CPU on a personal
laptop; GPU performance scaling may differ, particularly for
large cell sizes. We start with a unit cell and start making
supercells with [2,2,2], [3,3,3], [4,4,4] and [5,5,5] dimensions.
For the GPAW case we use 8 × 8 × 8 k-points and as we make
supercells, and we reduce the k-points inversely proportional to
the supercell size. As shown in Fig. 6, we nd that out of these
three, the EAM is the fastest method. The ALIGNN-FF is an
tarting with elemental solids only. The x-axis values represent the mole
nly for the (a) Ni–Al system and (b) Cu–Au system.
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Fig. 6 Timing comparison for the FCC Al system for (a) EAM, (b) ALIGNN-FF and (c) GPAW DFT methods.
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order of magnitude slower than the EAM, as expected. While
EAM potentials are considerably faster, we note that they are
difficult to train for multi-component systems. The GPAW
single step calculations are almost 100 times slower than the
ALIGNN-FF. As we add multiple electronic and ionic relaxation
steps in DFT, the computational cost drastically increases. Note
that we chose a very generalized DFT set up with a 330 eV plane
wave cutoff and PBE59 exchange correlation functional for
GPAW calculations. As we add more k-points and a plane wave
cut-off, the computational cost will increase. Moreover, this
comparison is only for an elemental system, and as the system
complexity (such as the number of elements, number of elec-
trons, vacuum padding etc.) increases, we believe the ALIGNN-
FF will get a signicantly higher boost in speed. The ALIGNN-
FF does not explicitly suffer from DFT parameters such as
plane-wave cutoff and k-point settings, which can add much
higher computational cost.
Conclusion

In summary, we have developed a unied atomistic line graph
neural network based force-eld (ALIGNN-FF) that can model
a diverse set of materials with any combination of 89 elements
from the periodic table. Using several test cases, we demon-
strate the application of this method to determine several
properties such as lattice constants, formation energies, and an
EV-curve for different materials including metallic, ionic and
van der Waals bonded materials.

Although the above examples are based on a few test cases,
the ALIGNN-FF can, in principle, be used for several applica-
tions such as investigating defective systems, high-entropy
alloys, metal–organic frameworks, catalysts, battery designs,
etc. and its validity needs to be tested for other applications
which is beyond the scope of the present work. Also, as the
methods for including larger datasets improve (such as training
on millions of data points), and integration of active learning
and transfer learning strategies is achieved, we believe we can
train more accurate models. Moreover, such a universal FF
model can be integrated with a universal tight-binding model60

so that classical and quantum properties can be predicted for
large systems. In the current state, such FFs can be very useful
for structure optimization; however, there is lot of room for
352 | Digital Discovery, 2023, 2, 346–355
improvement in terms of other physical characteristics such as
defects, magnetism, charges, electronic levels, etc. Under-
parameterized potentials get drastically better energy and
force accuracy, but are much narrower in scope and have much
higher training data density in their regions of applicability,
based on highly tailored (and expensive) t-for-purpose dataset
generation. Over-parameterized GNNs are currently trained on
extremely sparse datasets that are repurposed from high
throughput material discovery efforts (e.g. JARVIS-DFT). Their
potential to generalize a much greater chemical diversity is
good, but a lot of research is needed to close the gap in accuracy
with more narrow MLFF methods. A happy path forward for
future research is probably intermediate in terms of the breadth
of chemical and structural space and dataset density. Addi-
tionally, availability of standard benchmark datasets of multi-
component systems with important properties such as diffu-
sion coefficients for a diverse set of solute species, stacking fault
energies, defect formation energies (solute substitution,
vacancy, Schottky/Frenkel, etc), thermal conductivity, mechan-
ical properties, and interface properties would play a pivotal
role in the development of universal force-elds.

Integration with an external coding interface such as Alloy
Theoretic Automated Toolkit (ATAT),61 calculation of phase
diagrams (CALPHAD),62 Universal Structure Predictor
(USPEX),63 ab initio random structure searching (AIRSS),64

genetic algorithm for structure and phase prediction (GASP),65,66

RASPA,67 etc. would further extend the applications for alloy
design, structure predictions and designing nanoporous mate-
rials in the future. We note that the current force-eld has been
mainly evaluated for solids only, but in principle can be
extended to polymers, andmolecular and hybrid systems as well
in the future. While there are several areas of improvements for
such a unied force-eld, we believe that this work would spark
interest among materials scientists and engineers to enable
a very wide range of atomistic applications.
Data availability

The dataset, code and model used in this work are available at:
https://doi.org/10.6084/m9.gshare.21667874. The JARVIS-DFT
dataset can also be obtained from the websites: https://
© 2023 The Author(s). Published by the Royal Society of Chemistry
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