A manganese dioxide–silver nanostructure-based SERS nanoplatform for ultrasensitive tricyclazole detection in rice samples: effects of semiconductor morphology on charge transfer efficiency and SERS analytical performance†
Abstract
Taking advantage of metal–semiconductor junctions, functional nanocomposites have been designed and developed as active substrates for surface-enhanced Raman scattering (SERS) sensing systems. In this work, we prepared three types of nanocomposites based on manganese oxide (MnO2) nanostructures and electrochemically synthesized silver nanoparticles (e-AgNPs), which differed according to the morphologies of MnO2. The SERS performance of MnO2 nanosheet/e-Ag (MnO2-s/e-Ag), MnO2 nanorod/e-Ag (MnO2-r/e-Ag), and MnO2 nanowire/e-Ag (MnO2-w/e-Ag) was then evaluated using tricyclazole (TCZ), a commonly used pesticide, as an analyte. Compared to the others, MnO2-s/e-Ag exhibited the most remarkable SERS enhancement. Thanks to its large surface area and ability to accept/donate the electrons of the semiconductor, MnO2-s acted as a bridge to improve the charge transfer efficiency from e-Ag to TCZ. In addition, the MnO2 content of the nanocomposites was also considered to optimize the SERS sensing performance. With the optimal MnO2 content of 25 wt%, MnO2-s/e-Ag could achieve the best SERS performance, allowing the detection of TCZ at concentrations down to 6 × 10−12 M in standard solutions and 10−11 M in real rice samples.