Issue 40, 2023

Electronic properties and carrier mobilities of nanocarbons formed by non-benzoidal building blocks

Abstract

Exotic 1D and 2D carbon nanostructures have been grown in the laboratory in the last few years by means of surface-assisted chemical routes. In these processes, the strategical choice of a molecular precursor plays a dominant role in the determination of the synthesized nanocarbon. Further variations of these techniques are able to produce non-benzoidal carbon quantum-dots (QDs). Considering this experimental scenario as motivation, we propose a series of nanoribbon systems based on concatenating recently synthesized carbon QDs containing pentagonal, hexagonal, and heptagonal rings. We use density functional theory (DFT) simulations to reveal their properties can range from metallic to semiconducting depending on the concatenation hierarchy used to form the nanoribbons. This DFT implementation is based on a LCAO approach to describe valence wavefunctions and most of the simulations employ the PBE-GGA functional. Since this functional is known to underestimate band gaps, we also use the B3LYP functional in a plane-wave DFT approach for a selected case for comparison purposes. These systems show a different gap versus width relationship compared to conventional graphene nanoribbons setups and a particular set of carrier mobility values. We further discuss the interplay between the QD's frontier states and the electronic properties of the nanoribbons in light of their structural details.

Graphical abstract: Electronic properties and carrier mobilities of nanocarbons formed by non-benzoidal building blocks

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2023
Accepted
29 Aug 2023
First published
12 Sep 2023

Phys. Chem. Chem. Phys., 2023,25, 27053-27064

Electronic properties and carrier mobilities of nanocarbons formed by non-benzoidal building blocks

J. A. S. Porto, D. J. P. Beserra, F. M. de Vasconcelos, P. V. Silva and E. C. Girão, Phys. Chem. Chem. Phys., 2023, 25, 27053 DOI: 10.1039/D3CP01436C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements