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The roto-conformational diffusion tensor as a tool
to interpret molecular flexibility†

Sergio Rampino, Mirco Zerbetto * and Antonino Polimeno

Stochastic modeling approaches can be used to rationalize complex molecular dynamical behaviours in

solution, helping to interpret the coupling mechanisms among internal and external degrees of freedom,

providing insight into reaction mechanisms and extracting structural and dynamical data from

spectroscopic observables. However, the definition of comprehensive models is usually limited by (i) the

difficulty in defining – without resorting to phenomenological assumptions – a representative reduced

ensemble of molecular coordinates able to capture essential dynamical properties and (ii) the complexity

of numerical or approximate treatments of the resulting equations. In this paper, we address the first of

these two issues. Building on a previously defined systematic approach to construct rigorous stochastic

models of flexible molecules in solutions from basic principles, we define a manageable diffusive frame-

work leading to a Smoluchowski equation determined by one main tensorial parameter, namely the

scaled roto-conformational diffusion tensor, which accounts for the influence of both conservative and

dissipative forces and describes the molecular mobility via a precise definition of internal–external and

internal–internal couplings. We then show the usefulness of the roto-conformational scaled diffusion

tensor as an efficient gauge of molecular flexibility through the analysis of a set of molecular systems of

increasing complexity ranging from dimethylformamide to a protein domain.

1. Introduction

The dynamical behaviour of macromolecules in solution plays a
key role in biological contexts. Dynamics is in fact responsible
for generating a set of different structures of the same protein,
for tuning binding properties of folded proteins (allosterism), for
regulating pathways of folding and binding, and for controlling
the function of disordered proteins or domains.1,2 Accessing and
understanding molecular motion is thus of primary importance
in the study of these processes. In this respect, a number of
techniques have been developed over the years to investigate
macromolecular dynamics, both from the experimental (e.g.,
NMR,3 fluorescence techniques,4 time-resolved X-ray scattering,5

atomic force microscopy,6 neutron spectroscopy;7 see this last
reference for a comprehensive review) and the theoretical and
computational perspectives. The dynamics of macromolecules in
solution can in principle be reproduced in silico by fully atomistic
molecular dynamics (MD) simulations through popular packages

such as GROMACS, CHARMM and NAMD. However, considering
a medium-size protein with a sufficient number of surrounding
water molecules an order of 104–105 atoms is typically reached,
and limitations due to computational cost both in terms of time
and memory usage are easily met even on high-performance
computing platforms. To overcome these limitations, several
strategies can be pursued.

First of all, direct coarse-grained approaches have been
developed over the years with the aim of reducing the number
of explicitly considered degrees of freedom by collecting in
some appropriate way groups of atoms into collective particles
(beads) and adopting an effective force field among them, also
aided by state-of-the art machine-learning techniques.8,9 A less
direct but intriguing approach is followed when distinguishing
between relevant motions (or coordinates), primarily affecting
the process or property under study, and non-relevant ones,
which have – or are supposed to have – a negligible effect
and can be treated in some suitable approximate way. This is the
field of the so-called relevant dynamics: in other words, a few
important details are supposed to be responsible for a phenom-
enon to happen, while all the others can be thought of as molecule-
dependent fine tuners of the properties of the phenomenon. In
these approaches, the problem is thus that of defining/finding the
relevant coordinates of the system, focusing on the important,
hopefully small, subset of degrees of freedom. The partition
‘‘relevant vs. irrelevant’’ can be based on purely phenomenological
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considerations, or, at least approximately, on algorithmic pro-
cedures. In the Gaussian Network Model, for instance, the
molecule is seen as an ensemble of beads interacting within a
cutoff radius with a harmonic potentials of the same strength.10,11

The diagonalization of the so-called Kirchoff matrix (worked out
from the variance-covariance matrix describing the correlation
between the displacements of bead pairs) leads to the definition
of a set of generalized coordinates (linear combinations of Carte-
sian coordinates of the beads) whose relevance in terms of relaxa-
tion times is directly proportional to the amplitude of the motion
given by the related eigenvalue. Similar alternative models are the
anisotropic network model, based on the diagonalization of
the Hessian of the potential instead of the Kirchoff matrix,12,13

and the normal mode analysis, expressing the dynamics of a
protein as a superposition of collective motions called normal
modes.14,15 Among other viable approaches, the filtering technique
is based on the idea of removing high-frequency fast motions with
a low pass filter applied to a Fourier transformed MD trajectory,16,17

to focus on the structural and energetic features of low-frequency
collective motions. Singular Value Decomposition is thought to be
very useful for characterization of the nonlinear dynamics of
multivariate systems and to the identification of the dominant
modes of motion in systems whose cooperative dynamics cannot
be fully explored within reasonable computation time using con-
ventional simulation techniques.18 Finally, the widely employed
principal component analysis,19 also known as essential dynamics,
involves as some of the previously mentioned techniques the
construction and diagonalization of a matrix which leads to the
definition of collective generalized coordinates.

Once defined, the subset of relevant coordinates can be
described using stochastic approaches, which are particularly
useful when discussing molecules in solutions. The definition
of a comprehensive approach to define molecularly-based
Fokker–Planck (FP) models can be conducted within a general
framework. In our previous work20,21 we gave a contribution to
the definition of a general procedure to derive a FP description
by addressing the relaxation processes of a flexible (macro)-
molecule as a non-rigid body, based on a generic set of internal
and external degrees of freedom, which define a Markovian
process. This was pursued by first setting up the Liouville
equation of motion22 for a generic flexible body defined as a set
of material points (atoms or beads), in terms of roto-translational
and natural internal coordinates. The general description of a
macromolecule in solution was then carried out in terms of a
collection of flexible bodies, to which a standard Nakajima-
Zwanzig23,24 projection method was applied in order to eliminate
the irrelevant, i.e. not directly observed, degrees of freedom.
A generalized master equation was obtained. Alternative modeling
options, based on different choices of the internal variables, of
accuracy levels of the description of solvents effects, etc., were
reviewed. The case of a partially rigid Brownian rotator (semi-
flexible body model), i.e. with only internal modes described by a
harmonic internal energy, was discussed.21

The resulting theoretical approach, while effective, is still
considerably challenging from a computational point of view.
To partially overcome this limitation, we propose here to

simplify the general scheme20,21 by projecting out all the
conjugate momenta. Such an approximation is valid in the
diffusive limit, and leads to the Smoluchowski description of
the stochastic motion of the relevant coordinates only. We
present in particular in this paper first, for sake of completeness,
the derivation of the diffusive description from the general
model, and then we concentrate on the characteristics of the
main tensorial parameter defining the resulting FP equation, i.e.
the (scaled) roto-conformational diffusive tensor, D, which
includes, at least for semi-flexible systems not undergoing large
amplitude internal motions, information on both the molecular
internal energy landscape and the dispersive medium. In parti-
cular, we intend to test the usefulness of D as a gauge of
molecular flexibility. We argue that, by analysing in different
ways the tensor elements, its eigenvalues spectrum and other
derived quantities, it is possible to acquire additional insight
into the molecular mobility. To do so, after sketching the
theoretical framework in Section 2, we analyze in Section 3 the
features of the roto-conformational diffusion tensor for molecu-
lar systems of increasing complexity, ranging from the simple
dimethylformamide to a protein domain, and we discuss its
possible role as a signature for measuring the dynamical rele-
vance of subsets of coordinates. Conclusions are drawn in
Section 4 and some perspectives are outlined.

2. Roto-conformational
diffusive equation

Following ref. 20 and 21 (neglecting translational degrees of
freedom) we can identify for a generic non-rigid molecule in a
homogeneous medium a set of rotational coordinates (X) defined
with respect to some convenient instantaneous molecular frame
and the related angular momentum (L) as external variables,
coupled with a set of internal generic coordinates and their
momenta (q, p). A detailed summary of the basic hypotheses
required to derive a complete non-Hermitian FP equation for the
conditional probability of the system can be found in the ESI,† for
the interested reader. From eqn (S1) of the ESI,† several sources of
couplings can be observed: inertial coupling between coordinates
and momenta, precession terms, kinetic coupling related to the
generalized intertia tensor in the kinetic energy, friction coupling,
i.e. dissipative forces resulting from the full friction tensor
including non-zero roto-conformational blocks. All these quantities
are shape dependent, i.e. they are defined by tensors, which are
functions of q.

This picture is somewhat simplified when a diffusive limit is
considered, i.e. when it is assumed that momenta L, p relax much
faster then positional coordinates X, q. This is a reasonable
approximation, usually introduced when discussing molecular
relaxation processes in normal fluids at room temperature. The
original complete FP equation discussed in ref. 20 and 21, can be
therefore simplified by the rigorous elimination (via projection) of
the momenta, which are considered as fast relaxing modes. The
resulting time evolution operator in the reduced configuration
space X, q is Hermitian (or easily reduced to a Hermitian form),
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allowing for a considerably increased efficiency in the subsequent
numerical treatment, without renouncing to the full inclusion of
internal degrees of freedom, based on non-phenomenological
assumptions. The procedure employed to project the momenta
follows a standard Nakajima–Zwanzig23–25 formalism, and is
sketched in the ESI† for the sake of completeness. The result is
the diffusive (Smoluchowski) equation for the time dependent
conditional probability r(x,t) with x = (X, q), obtained after
averaging out all the momenta L, p

@

@t
rðx; tÞ ¼ �ĜDrðx; tÞ ¼ r̂

tr

xDrðxÞrxrðxÞ�1rðx; tÞ (1)

here rx is the gradient operator in x, r(x) is the equilibrium
Boltzmann distribution with respect to the internal energy U(x),
D = kBTn�1 is the roto-conformational diffusion tensor, obtained
as the inverse of the roto-conformational, shape dependent,
friction tensor n(x). Potential U(x) and friction tensor n(x) can be
obtained from molecular information (force fields or direct
quantum mechanical estimates for U; hydrodynamic models or
MD trajectories for n). Averaging out all momenta leads, not
surprisingly, to the disappearance of ‘‘mechanical’’ coupling;
internal and external degrees freedom are therefore coupled only
by friction terms, at least for a system moving in isotropic
environments in which the internal energy is independent from
the orientation of the molecular frame in the laboratory frame. A
generic correlation function for observables depending upon x
only can then be obtained in the diffusive limit

GðtÞ ¼ h f ðxÞj exp �ĜDt
� �

jgðxÞrðxÞix ¼ h f ðxÞjrðx; tÞix (2)

where the latter equivalence is valid for r(x,0) = g(x)r(x). Following
ref. 21, we shall limit our analysis here to the case of quadratic
internal energy of the form

U ¼ 1

2
ðq� q0ÞtrKðq� q0Þ (3)

which was defined as the semi-flexible body model in ref. 20 and
21. We define the set of scaled, shifted and internal coordinates
z = TK1/2(q � q0)(kBT)�1/2, and we use the symmetrized form of
eqn (2); matrix T assures that the resulting block of the diffusion
tensor for internal variables is diagonal. We also rotate the initial
molecular frame, chosen essentially in arbitrary way, to a new
frame which assures that the block of the diffusion tensor for the
orientation variables is also diagonal. Summarizing, using again
the collective symbols X for the oriental coordinates (but in the
new frame) and x for the total configuration space X, z we are left
with the following problem

@

@t
~rðx; tÞ ¼ �~GD~rðx; tÞ ¼ rðxÞ�1=2rtr

xDrðxÞrxrðxÞ�1=2~rðx; tÞ

(4)

with

rðxÞ ¼ 1

8p2
1

ð2pÞN=2 expð�z2=2Þ; (5)

and

D ¼
DðRRÞ DðRSÞ

DðRSÞtr DðSSÞ

 !
: (6)

Here D(RR) is the diagonal pure rotation diffusion matrix (3 � 3),
D(SS) is the diagonal pure internal diffusion matrix (N� N), D(RS) is
the coupling matrix (3 � N), and tr stands for matrix transposi-
tion. The time evolution operator is Hermitian. The scaled roto-
conformational diffusion tensor is the key tensorial parameter
here: it conflates together both the influence of conservative (rising
from U) and dissipative (from friction) forces, describing the
molecular mobility via a precise definition of internal–external
and internal–internal couplings. Correlation functions as given in
eqn (2), can now be evaluated by numerically solving eqn (4), and
the Hermitian structure and Gaussian dependence of r(x) allow
efficient treatments. In this contribution we concentrate the dis-
cussion on the rich structure of the scaled roto-conformational
tensor and its possible usefulness as an indicator of molecular
flexibility.

3. Results
3.1 Systems

An ensemble of eight molecular systems of increasing complexity
has been analyzed (see Fig. 1). The simplest system is dimethyl-
formamide (DMF hereinafter), with 12 atoms and 30 internal
degrees of freedom. Then follows a series of six oligosaccharides
constituted by 2 to 8 sugar units, number of atoms ranging from
46 to 168, and number of internal degrees of freedom ranging
from 132 to 498:
� a-L-Rhap-a-(1 - 2)-a-L-Rhap-OMe (R2R, 2 residues)
� b-D-Glcp-(1 - 6)-a-D-[6-13C]-Manp-OMe (BGL, 2 residues)
� b-D-Glcp-(1 - 3)[b-D-Glcp-(1 - 2)]-a-D-Manp-OMe (GGM, 3

residues)
� a-D-Manp-(1 - 2)-a-D-Manp-(1 - 6)-a-D-[6-13 C]-Manp-

OMe (TRI, 3 residues)
� a-L-Fucp-(1 - 2)-b-D-Galp-(1 - 3)-b-D-GlcpNAc-(1 - 3)-b-D-

Galp-(1 - 4)-D-Glcp (LNF, 5 residues)
� g-cyclodextrin (GCY, 8 residues)
The last (and most complex) considered system is GB3

protein (PDB id: 1P7F), with 56 amino acid residues, 862 atoms
and 2580 internal degrees of freedom. The orientation of the
molecular frame is defined by three consecutively bonded
atoms as follows: the origin coincides with the position of the
second atom, the first atom lies on the negative x axis, and the
third atom lies in the xy plane. For DMF and for the oligosac-
charides the first two atoms were selected as the hydrogen and
the carbon, respectively, of a plausible NMR probe (either CH or
CH2); for GB3 the triplet of atoms defining the orientation
frame was chosen as the first three atoms (NCC) of the polymer
backbone. Fig. 1 shows the molecular structures of the con-
sidered systems with the above mentioned triplets of atoms
highlighted as spheres.

In the hydrodynamic model used to evaluate the friction
tensor, four quantities are required, namely: the temperature,
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the local viscosity, the hydrodynamic boundary conditions and
the effective radius of the atoms, Reff. For the set of oligosac-
charides, temperature and viscosity were chosen among those
for which experimental NMR data are available (see ref. 26–30),
and Reff was set to the optimal value providing the lowest sum

of squared percentage deviations for T1, T2 and NOE over the
entire ensemble of experimental data available for each system,
as estimated in ref. 31. For DMF and GB3, temperature and
viscosity were arbitrarily chosen, and a value of Reff = 2.0 Å was
used. For all systems stick boundary conditions were applied.

Fig. 1 Three-dimensional representations of the molecular structures of the eight considered systems. The three atoms defining the orientation
reference frame (see text for discussion) are highlighted as spheres.
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A summary of the parameters used for all the considered
systems is provided in Table 1. Calculations were performed
according to the computational protocol described in the ESI.†

3.2 Rotational part of the diffusion tensor

In Table 2, the following three sets of values are reported for
each systems in units of fs�1:

1. elements D(RR)
i � D(RR)

ii of the diagonal rotational block
D(RR) of D

2. first three eigenvalues of the set of eigenvalues obtained
by full diagonalization of D and sorted in ascending order.

3. eigenvalues of the rotational diffusion tensor for the
rigid molecule obtained with the DiTe2 software package,32

using the same hydrodynamic model and the same conditions
described above.

A strikingly good agreement is found between the eigenvalues
of the rotational diffusion tensor of the rigid molecule (set 3) and
the lowest three eigenvalues of the (fully diagonalized) D matrix
(set 2). Therefore, upon coordinate transformation the diagona-
lization of D seems to lead to a separation of motions, with the
three separated eigenvalues being close to the rotational diffu-
sion of the molecule as if it was rigid. The two sets of eigenvalues
show an overall decreasing trend with increasing systems size
and complexity. In contrast, the three elements of the diagonal
rotational block of D(RR) (set 1) do not exhibit a clear trend with
increasing system size, and except for the first (and smallest)
system their values are one or two orders of magnitude smaller
than the respective values from the other two sets. This is in line
with the fact that the elements of D(RR)

i relate to the rotation of a
small subsystem made of the triplet of atoms used to define the
molecular frame.

3.3 Analysis of the roto-conformational diffusion tensor

Interesting information can be gained through the analysis of
the remaining blocks of the roto-conformational diffusion
tensor D. In fact, the diagonalization of the conformational
block of the diffusion tensor leads to the definition of a set of
‘normal modes’, each defined by an eigenvector (a column of the
T matrix) and associated to a given eigenvalue D(SS)

i � D(SS)
ii which

has units of a frequency. These normal modes are linear combi-
nations of the original set of internal coordinates q with coeffi-
cients being the elements of the respective eigenvector. Their
character, in terms of their motion, can be thus inferred by the
analysis of these coefficients. In particular, the contribution to a
given j-th normal mode coming from the motion associated with
a given internal coordinate qi can be estimated as the square of
the matrix element Tij, with the squares of the element of each j-th
column of T summing up to one.

On the other hand, the analysis of the elements of the roto-
conformational block D(SR) provides information on the cou-
pling between the internal degrees of freedom and the external
rotation.

‘Normal modes’ and coupling with external motion in DMF.
Focusing on the simplest considered system, DMF, Fig. 2 shows
the values of the diagonal conformational block D(SS) (panel c),
the values of the elements of the roto-conformational block
D(SR)

ij divided by |D(SS)
i � D(RR)

j |, so as to provide an indication of
the importance of the coupling (panel d), and the square of the
elements of the T matrix (panel b). The molecular structure is
also shown for reference (panel a). The rows of the T matrix
(panel b) have been reordered so as to group together first the
stretchings, then the bendings, and finally the torsions. Each
row is labeled with a string indicating the kind of motion
(‘S’ for stretching, ‘B’ for bending, ‘T’ for torsion) and the IDs
of the atoms associated with that motion, listed in the same

Table 1 Summary of the parameters of the hydrodynamic model used for
the eight considered systems temperature (T), viscosity (Z), and effective
radius (Reff). Stick boundary conditions have been assumed in all the
calculations

DMF R2R BGL GGM TRI LNF GCY GB3

T/K 298.15 298.2 253.0 298.6 298.0 303.0 323.0 298.15
Z/cP 2.19 2.19 2.82 1.09 3.66 1.40 2.90 0.91
Reff/Å 2.0 1.6 1.8 1.8 2.2 3.2 1.8 2.0

Table 2 Elements of the diagonal rotational block D(RR) of the roto-
conformational diffusion tensor D, first three of eigenvalues of the roto-
conformational diffusion tensor D, and eigenvalues of the rigid-molecule
rotational diffusion tensor for the eight considered systems. Units are fs�1

i = 1 i = 2 i = 3

DMF
D(RR)

i 6.69 � 10�6 1.26 � 10�5 2.22 � 10�5

(egv[D])i 1.82 � 10�6 2.04 � 10�6 2.14 � 10�6

Rigid mol. 1.83 � 10�6 2.15 � 10�6 2.21 � 10�6

R2R
D(RR)

i 1.05 � 10�5 1.98 � 10�5 3.24 � 10�5

(egv[D])i 5.19 � 10�7 5.75 � 10�7 7.53 � 10�7

Rigid mol. 5.24 � 10�7 5.78 � 10�7 7.66 � 10�7

BGL
D(RR)

i 5.46 � 10�7 1.03 � 10�6 1.66 � 10�6

(egv[D])i 2.56 � 10�8 2.81 � 10�8 4.47 � 10�8

Rigid mol. 2.58 � 10�8 2.83 � 10�8 4.54 � 10�8

GGM
D(RR)

i 1.60 � 10�5 3.14 � 10�5 5.00 � 10�5

(egv[D])i 5.65 � 10�7 6.57 � 10�7 7.95 � 10�7

Rigid mol. 5.70 � 10�7 6.65 � 10�7 8.08 � 10�7

TRI
D(RR)

i 3.33 � 10�6 6.24 � 10�6 9.91 � 10�6

(egv[D])i 1.35 � 10�7 1.42 � 10�7 2.39 � 10�7

Rigid mol. 1.36 � 10�7 1.43 � 10�7 2.43 � 10�7

LNF
D(RR)

i 4.04 � 10�6 7.87 � 10�6 1.22 � 10�5

(egv[D])i 1.40 � 10�7 1.47 � 10�7 2.23 � 10�7

Rigid mol. 1.42 � 10�7 1.49 � 10�7 2.27 � 10�7

GCY
D(RR)

i 6.79 � 10�6 1.28 � 10�5 2.03 � 10�5

(egv[D])i 9.54 � 10�8 1.12 � 10�7 1.22 � 10�7

Rigid mol. 9.63 � 10�8 1.13 � 10�7 1.23 � 10�7

GB3
D(RR)

i 1.37 � 10�5 2.26 � 10�5 4.01 � 10�5

(egv[D])i 5.35 � 10�8 5.79 � 10�8 7.62 � 10�8

Rigid mol. 5.41 � 10�8 5.84 � 10�8 7.67 � 10�8
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order as they appear in the Z matrix. These IDs are the same
that appear as atom labels in panel a. We start our analysis
from the elements of the diagonal block D(SS) (panel c). These
show a monotonic trend with a few more or less evident
discontinuities which suggest the breaking of the overall set
of values in three frequency ranges: i A [1,6], [7,20] and [21,30].
Looking now at the color plot of the squared elements of the T
matrix (panel b), one sees that high values of D(SS)

i are asso-
ciated mainly with stretching motions, intermediate values of
D(SS)

i are associated mainly with bending motions, and low
values of D(SS)

i are associated mainly with torsions.
The roto-conformational coupling (panel d) is strong (high

values of |D(SR)
ij |/|D(SS)

i � D(RR)
j |) for only a few normal modes

with the lowest frequencies (thus mainly represented by torsion
motions). In particular, the first two normal modes exhibit
by far the highest coupling with external rotation, while the
remaining modes turn out to be negligibly coupled to it. The
analysis of the squared elements of the first two columns of

the T matrix (panel b) reveals that the internal motions mostly
coupled with the external rotation are the C2–N3–C–H torsions
(see panel a for atom numbering), with the last two atoms being
one of the three CH pairs of each methyl group.

A measure of the ‘coldness’/‘hotness’ of the atoms (i.e. the
involvement of atoms in motions associated with lower or
higher frequencies), can be computed as follows:

0hotness0 of atom a ¼ 1

nðaÞ

X
j

X
i

D
ðSSÞ
j jT ðaÞij j2 (7)

where the T(a)
ij ’s are the elements of the T matrix relating to

internal coordinates (of the q set) featuring atom a, and n(a) is
the number of internal coordinates (of the q set) featuring that
atom. In other words this yields for each atom an average
frequency which is worked out from the frequencies associated
with the motions involving that atom, weighed by the squared
elements of the T matrix. These atomic average frequencies can

Fig. 2 (a) Molecular structure of DMF. (b) Color plot of the elements Tij
2 of the matrix diagonalizing the internal block (SS) of the diffusion matrix. Each

row is labeled with a string indicating the kind of motion (‘S’ for stretching, ‘B’ for bending, ‘T’ for torsion) and the IDs (see panel a) of the atoms associated
with that motion, listed in the same order as they appear in the Z matrix. (c) Elements D(SS)

i (in fs�1), i.e. eigenvalues of the internal block (SS) of the
diffusion matrix. (d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the overall rotation.
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be plotted for visualization purposes using a color scale for
each atom as in Fig. 3, where the color ranges from white

(‘coldest’ atom, i.e. lowest frequency) to red (‘hottest’ atom, i.e.
highest frequency). The figure shows that, upon adoption of
the internal coordinates listed in the row labels of panel a, the
hottest and coldest atoms turn out to be the O5 oxygen and the
H1 hydrogen, respectively. This derives from the fact that O5 is
mainly involved in the O5–C2 stretching, which strongly parti-
cipates to normal mode j = 30 featuring the highest frequency
eigenvalue, and in only one additional bending and one addi-
tional torsion. On the other hand, H1 is involved in one
stretching, two bendings, and three torsions and thus partici-
pates mainly in lower-frequency modes. The average frequen-
cies of the remaining atoms lie in an intermediate range due to
the fact that their contribution in low- and high-frequency
modes is more even than the two extremes O5 and H1.

One may further push the analysis to the contribution of
each atom in a given type of motion (stretchings, bendings,
torsions) for a given frequency range. To this purpose the
following expression can be used:

contribution of atom a ¼ 1

nðaÞ

X
j2½freq: range�

X
i2½mode type�

jT ðaÞij j2 (8)

Fig. 3 Atomic average frequencies in DMF computed as per eqn (7) (see
text for discussion).

Fig. 4 Contribution of the atoms of DMF to stretchings, bendings and torsions in three different frequency ranges (see text for discussion).
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where n(a) is the number of internal coordinates (of the q set) of
the chosen mode type featuring that atom. In eqn (8), j spans
the columns of T associated with eigenvalues in a given
frequency range, and i spans the rows of T associated with a

given mode type. Fig. 4 summarizes the results of such analysis
for DMF. In particular, the three above-highlighted frequency
ranges (identified by the respective eigenvalue indices) [1,6],
[7,20] and [21,30] and relating to different kind of motions can

Fig. 5 (a) Molecular structure of LNF, with sugar units labeled with letters from A to E. (b) Color plot of the elements Tij
2 of the matrix diagonalizing the

internal block (SS) of the diffusion matrix. The initial row of the stretchings block (rows 1–112), of the bendings block (rows 113–222), and of the torsions
block (rows 223–333) is labeled with ‘S’, ‘B’, and ‘T’, respectively. (c) Elements D(SS)

i (in fs�1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix.
(d) Extent of the coupling between the internal motions (each described by the i the normal mode) and the overall rotation (note that the abscissa is in
logarithmic scale).

Fig. 6 Character of the lowest frequency (and highest coupling with external motion) normal mode in terms of the constituting torsions, bendings and
stretchings (see text for discussion) for LNF.
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be conveniently adopted for this system. This results in a 3 � 3
matrix of color plots (Fig. 4), illustrating the contribution of
each atom in motions of a given type for a selected frequency
range. In these plots, the color scale ranges from zero (white) to
one (red). As evident from Fig. 4, stretchings are the predomi-
nant kind of motions in the high frequency range, bendings are
more involved in the medium frequency range (where also the
C2–H1 stretching falls), and torsions are relevant in the med-
ium and low frequency ranges. This is perfectly in line with the
already discussed analysis of the elements of the T matrix
(panel b of Fig. 2). In fact, eqn (8) converts the coordinate-
related information encoded in the T matrix to an atom-related
information, thus establishing a direct analogy between the

color plot of the T matrix and the matrix of plots reported in
Fig. 4.

‘Normal modes’ and coupling with external motion in
pentasaccharide LNF. The features of the roto-conformational
tensor for pentasaccharide LNF (113 atoms, 333 internal
degrees of freedom) are illustrated in Fig. 5. The color plot of
the squared elements of the T matrix in panel b shows that,
analogously to the results for system DMF, high-frequency
normal modes (approximately those in the index range [241,
333]) involve mainly stretchings while bendings and torsions
contribute mainly to normal modes in the medium-low range,
with torsion predominating in the bottom end (index range
[1,50]). The eigenvalues D(SS)

i (panel c) show a smoother trend
than those of the smaller system DMF, with a step-wise beha-
viour only in the region around i = 240, when stretching
motions start to predominate.

Panel d shows that there is only one normal mode, precisely
the lowest-frequency one, which is tightly coupled to the overall
rotation of the molecule. The nature of this mode can be
appreciated by inspection of Fig. 6, where the atom connections
involved in the torsions (left panel), bendings (center panel)
and stretchings (right panel) contributing to the mode with
value Tij

2 above a given threshold are highlighted in green. The
threshold is here set to 1/N (with N, as already mentioned,
being the number of internal degrees of freedom), i.e. exactly
equal to the average value of all contributions to that mode by
the original internal coordinates q. In other words, in the panels
of Fig. 6, only the connections between atoms involved in
motions contributing above average to the mode are highlighted.

Fig. 7 Atomic average frequencies in LNF computed as per eqn (7) (see
text for discussion).

Fig. 8 Contribution of the atoms of LNF to stretchings, bendings and torsions in three different frequency ranges (see text for discussion).
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Fig. 9 (a) Molecular structure of GB3. (b) Color plot of the elements Tij
2 of the matrix diagonalizing the internal block (SS) of the diffusion matrix. The

initial row of the stretchings block (rows 1–861), of the bendings block (rows 862–1720), and of the torsions block (rows 1721–2580) is labeled with ‘S’, ‘B’,
and ‘T’, respectively. (c) Elements D(SS)

i (in fs�1), i.e. eigenvalues of the internal block (SS) of the diffusion matrix. (d) Extent of the coupling between the
internal motions (each described by the i the normal mode) and the overall rotation (note that the abscissa is in logarithmic scale).

Fig. 10 Character of the fifth normal mode in terms of the constituting torsions, bendings and stretchings for GB3 (see text for discussion).
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The figure thus reveals that the only normal mode significantly
coupled to the external rotation results mainly from torsions
involving the atoms of the polymer backbone, plus one coordi-
nate relating to the bending motion of three of the sugar rings
with respect to the remaining two. For LNF we also analyzed how
both the parameters relating to physical conditions and the
choice of the triplet of atoms defining the orientation frame
affect the above discussed results. Results are fully reported and
discussed in the ESI.†

Focusing now on the atom ‘hotness’, Fig. 7 shows the atomic
average frequencies of the atoms using the same color scale as
in Fig. 3, ranging from white (coldest atom) to red (hottest
atom). In this case, the hottest atom is the only terminal oxygen
atom, which is bound to a single carbon atom and is thus
mainly involved in the stretching of this bond. On the other
hand, the coldest atoms are the carbon and oxygen atoms
constituting the oligomer backbone linking the sugar rings,
which are mainly involved in slow torsion motions.

Also in this case, the matrix of the color plots (Fig. 8)
illustrating the contribution of the atoms in different kind of

motions for the three above envisaged frequency ranges
(identified by index ranges[1,50], [51,240], and [241,333])
reflects the features of the color plot of the T matrix reported
in panel b of Fig. 5.

‘Normal modes’ and coupling with external motion in
protein GB3. We finally consider the case of the more complex
system GB3 (862 atoms, 2580 internal degrees of freedom).
Fig. 9 summarizes the features of the roto-conformational
diffusion tensor for this system. In particular, panel b shows
that also for this systems, stretching motions mostly participate
in the normal modes with highest frequencies (index range
approximately [1801,2580]), while bendings and torsions
mainly contribute to normal modes in the medium-low range,
with torsions predominating in the bottom end (index range
approximately [1,280]). Due to the bigger size of the molecule,
the eigenvalues D(SS)

i (panel c) show now a smooth trend, with
no apparent discontinuities. Finally, panel d reveals that only
two normal modes (the fifth and the sixth in ascending order of
related eigenvalue) are significantly coupled to external rota-
tion. The nature of these two modes can be visualized through
Fig. 10 and 11, where, as in Fig. 6 the atom connections
involved in torsions, bendings and stretchings contributing
above average to the mode are highlighted in green.

The two figures show that the modes mainly results from
torsions and bendings involving the atoms of the polymer
backbone, plus a stretching of the bond linking the S-methyl
thioether side chain of the first (methionine) residue to the
protein backbone.

The atomic average frequencies for GB3 can be visualized in
Fig. 12, where the same color scale is used as in the previously
discussed Fig. 3 and 7, i.e. ranging from white (coldest atom) to
red (hottest atom). In line with the results on the smaller
polymer LNF, the hottest atoms are here the ‘external’ terminal
oxygens, while the colder atoms are the more ‘internal’ carbon
and nitrogen atoms constituting the polymer backbone. For
this last system too, the matrix of the color plots (Fig. 13)
illustrating the contribution of the atoms in different kinds of
motions for the three above envisaged frequency ranges (iden-
tified by index ranges [1,280], [281,1800], and [1801,2580])

Fig. 11 Character of the sixth normal mode in terms of the constituting torsions, bendings and stretchings for GB3 (see text for discussion).

Fig. 12 Atomic average frequencies in GB3 computed as per eqn (7) (see
text for discussion).
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reflects the features of the color plot of the T matrix reported in
panel b of Fig. 9.

4. Conclusions

Based on the previously defined systematic approach to build
rigorous stochastic models of flexible molecules in solution
from first principles,20,21 we have considered in this paper the
diffusive limit obtained upon assumption that momenta relax
much faster then positional coordinates. For systems moving in
isotropic environments in which the internal energy is inde-
pendent from the orientation of the molecular frame in the
laboratory frame, averaging out all momenta leads, not surpris-
ingly, to a framework in which mechanical coupling disap-
pears, and internal and external degrees freedom are coupled
only by friction terms. The resulting FP equation is thus
determined by one main tensorial parameter, namely the
scaled roto-conformational diffusion tensor, which accounts
for the influence of both conservative and dissipative forces
and describes the molecular mobility via a precise definition of
internal–external and internal–internal couplings.

Focusing on a set of molecular systems of increasing com-
plexity ranging from dimethylformamide, to several oligosac-
charides and a protein domain, we showed how the rich and
informative structure of the scaled roto-conformational diffu-
sion tensor can be analyzed to extract quantitative information
on the molecular mobility. In particular, the analysis of the
eigenvectors and eigenvalues of the matrix diagonalizing the
conformational block of the diffusion tensor provides a quan-
titative picture of the time scales of the different molecular
motions, putting on quantitative grounds, for instance, the
time-scale separation between stretching, bending, and torsion
motions. Moreover, a suitable combination of the elements of
the eigenvector matrix leads to an informative definition of the
‘coldness’/‘hotness’ of the atoms which can be used to quanti-
tatively assess the involvement or contribution of a given atom
in specific internal modes. Thus for instance, the intuitive
consideration that the coldest atoms of the considered five-
units oligosaccharide and protein domain are those constitut-
ing the polymer backbone, mainly involved in slow torsion
motions, while the hottest atoms are the terminal oxygen atoms
mainly involved in stretching motions, could be put on a

Fig. 13 Contribution of the atoms of GB3 to stretchings, bendings and torsions in three different frequency ranges (see text for discussion).
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thorough quantitative ground. Finally, the analysis of the non
diagonal block of the scaled roto-conformational diffusion
tensor leads to the precise determination of the few internal
modes strongly coupled with the overall external rotation. The
scaled roto-conformational diffusion tensor can thus be con-
veniently used as a gauge of molecular flexibility, also with the
aim of determining a cut-off in the degrees of freedom to be
included in the full solution of the related FP equation. Work is
ongoing in our group on the numerical resolution of this
equation with a focus on the computation of observables that
can be assessed through various spectroscopic techniques
including NMR and neutron spectroscopy, which simulta-
neously accesses spatial and time correlations (as opposed to
the angular correlations probed by NMR).

The analysis of molecular flexibility presented in this work
can be used as an alternative approach to the selection of
essential dynamics in macromolecules, including in the analy-
sis the flexibility in terms of characteristic time scales, instead
of just energy arguments. The idea is to be able to extract such
an essential dynamics (relevant coordinates) by analyzing short
(with respect to the time scales required to interpret slow
dynamics) MD trajectories. Machine learning techniques33,34

are expected to be efficiently employed to pursue the best
essential dynamics selection with respect to the physical obser-
vable that is being interpreted (e.g., NMR relaxation).
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G. de Fabritiis, F. Noé and C. Clementi, ACS Cent. Sci., 2019,
5, 755–767.

9 P. Gkeka, G. Stoltz, A. Barati Farimani, Z. Belkacemi,
M. Ceriotti, J. D. Chodera, A. R. Dinner, A. L. Ferguson,
J.-B. Maillet, H. Minoux, C. Peter, F. Pietrucci, A. Silveira,
A. Tkatchenko, Z. Trstanova, R. Wiewiora and T. Lelièvre,
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