Issue 16, 2023

Layer-dependent electronic structures and optical properties of two-dimensional PdSSe

Abstract

Two-dimensional (2D) layered palladium dichalcogenides PdX2 (X = S and Se) have attracted increasing interest due to their tunable electronic structure and abundant physicochemical properties. Recently, as the sister material of PdX2, PdSSe has received increasing attention and shows great promise for technological applications and fundamental research. In the present study, we focus on the layer-dependent geometry, electronic structure, and optical properties of PdSSe using first-principles calculations. The lattice shrinkage effect present in the 2D structure is suppressed with increasing number of layers. Attributed to the strong interlayer coupling interactions, the band gap decreases from 2.30 to 0.83 eV with increased thickness. Particularly, the dispersion of the band edges on the high symmetry path changes considerably from the monolayer to bilayer PdSSe, resulting in shifts of the conduction band minimum and valence band maximum. The multilayer PdSSe shows band convergence feature with multi-valley for the conduction band, which are maintained with reduced effective mass. Furthermore, the increasing number of layers drives a wider absorption range in the visible light region, and the light absorption capability increases from ∼10% to ∼30%. Meanwhile, the band edge positions of the multilayer PdSSe are more appropriate for photocatalytic water splitting. Our theoretical study reveals the enhanced valley convergence, conductivity and optical absorption performance of the few-layer PdSSe, which suggests its promising application in thermoelectric conversion, solar harvesting and photocatalysis.

Graphical abstract: Layer-dependent electronic structures and optical properties of two-dimensional PdSSe

Article information

Article type
Paper
Submitted
03 Jan 2023
Accepted
15 Mar 2023
First published
20 Mar 2023

Phys. Chem. Chem. Phys., 2023,25, 11827-11838

Layer-dependent electronic structures and optical properties of two-dimensional PdSSe

F. Xiao, W. Lei, W. Wang, Y. Ma, X. Gong and X. Ming, Phys. Chem. Chem. Phys., 2023, 25, 11827 DOI: 10.1039/D3CP00022B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements