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Description of conformational ensembles of
disordered proteins by residue-local probabilities†

Adolfo Bastida, *a José Zúñiga,a Beatriz Miguelb and Miguel A. Soler *c

The study of proteins with intrinsically disordered regions (IDRs) has emerged as an active field of

research due to their intriguing nature. Although IDRs lack a well-defined folded structure, they play

important functional roles in cells, following biological mechanisms different from those of the

traditional structured proteins. Consequently, it has been necessary to re-design experimental and

theoretical methods in order to face the challenges introduced by the dynamic nature of IDRs. In this

work, we present an accurate and cost-effective method to study the conformational dynamics of IDRs

based on the use of residue-local probabilistic expressions that characterize the conformational

ensembles obtained from finite-temperature molecular dynamics (MD) simulations. It is shown that the

good performance and the high convergence rates achieved with our method are independent of the

IDR lengths, since the method takes advantage of the major influence of the identity and conformation of the

nearest residue neighbors on the amino-acid conformational preferences to evaluate the IDR conformational

ensembles. This allows us to characterize the conformational space of IDRs using a reduced number of

probabilities which can be obtained from comparatively short MD simulations or experimental databases.

To exemplify the usefulness of our approach, we present an application to directly detect Molecular

Recognition Features (MoRFs) in an IDR domain of the protein p53, and to follow the time evolution of the

thermodynamic magnitudes of this system during its exploration of the conformational space.

1. Introduction

During the last twenty years, the study of proteins with intrin-
sically disordered regions (IDRs) has emerged as an active
research field,1–6 since they do not obey the well-established
paradigm that links protein function with a well-defined and
folded three-dimensional structure of the polypeptide chain
encoded in its amino acid sequence. In contrast, IDRs dyna-
mically explore their conformational space while remaining

functional4 and they are prevalent in eukaryotic genomes3 so they
should be properly considered as a new class of proteins with
biological mechanisms different from traditional structured pro-
teins. Consequently, it has been necessary to adapt and/or elabo-
rate new experimental7 and theoretical8,9 methods able to face the
subtleties and challenges introduced by the IDRs.

In this work, we focus in particular on what can be con-
sidered the most fundamental feature of any protein, its spatial
structure. While ordered proteins show a folding free energy
landscape with a deep absolute minimum, as visualized by the
folding funnel picture, IDRs populate many different local
minima, each of them corresponding to particular molecular
conformations separated by free energy barriers that can be
overpassed at room temperature.8 Therefore, IDRs have to be
modeled structurally as dynamic conformational ensembles.7,10–12

In practice resolving those conformational ensembles from
either experiment or simulations is a difficult task with plenty of
uncertainties. Although the number of experimental observables is
substantially smaller than the number of IDRs configurational
degrees of freedom, different valuable methods13,14 have been
recently developed for IDR ensemble reconstruction from experi-
mental observables providing estimates of the extent of the con-
formational heterogeneity. From the computational side, Molecular
Dynamics (MD) simulations are limited by the huge computational
effort required to guarantee the complete exploration of the
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molecular conformational space,12 along with the characterization
of the huge number of conformational states. The two principal
approaches that have been followed to try to overcome this
computational issue are enhanced sampling15 and dimensionality
reduction methods.16 Despite their partial success in describing the
conformational thermodynamics of IDRs17–20 and their ability to
reproduce different experimental observables,11,21,22 these methods
still have some limitations that prevent their general use for the
description of the IDR functional mechanisms, such as the risk of
loss of information and representativeness,16 or in the enhanced
sampling approach, the difficulties in the selection of suitable
collective variables.15 Moreover, although the use of experimental
data has been proven to be essential to validate observables
generated from computational approaches and force fields in IDR
systems, extending their use to the validation of conformational
ensembles is more difficult because multiple ensembles can match
the same experimental results within error after averaging.7,10–13,23

More recently a promising alternative approach has been proposed24

based on the exhaustive sample of small IDP fragments in MD
simulations that are subsequently assembled into full-length IDPs.

Alternative ways to generate conformational ensembles of
IDRs based on databases of pair residue (f,c) dihedral angles
have been proposed.25–29 The idea of using conformational pre-
ferences of each amino acid depending on the nearest neighbor
residues to elaborate molecular conformational ensembles has
already been explored in structured proteins,30,31 but its applica-
tion to IDRs is particularly promising since their disordered
character should facilitate a probabilistic description. However,
the inspection of these methods reveals that they use different
and incompatible approximations to evaluate the molecular con-
formational populations of the IDR ensemble in terms of the
conformational probabilities of each residue in the molecular
chain (see a more detailed discussion in Sections 2.1 and 3.1).
Moreover, the resulting ensembles were in principle successfully
validated by the doubtful method of averaging and comparing
with experimental data, as previously noted.

In this work, we use extensive Molecular Dynamics simula-
tions to show how the molecular conformational ensembles can
be properly described through probabilistic expressions by using
conformational preferences of each residue depending on the
identity and conformation of the nearest neighbor residues. It is
also shown that the probabilities required to generate the IDR
conformational ensembles can be obtained with reasonable
accuracy from short MD simulations. This approach allows us
to directly detect Molecular Recognition Features (MoRFs) and to
follow the time evolution of the thermodynamic magnitudes of
the system as it explores the conformational space.

2. Methods
2.1 Probabilistic ensembles

We consider a general peptide chain R1R2. . .RN composed by N
residues in which the ith residue can adopt NCi

different
conformations (Ci). A molecular conformation is specified by
a given set of conformations of the residues (C1C2. . .CN). We are

interested in the probability of finding the peptide in a given
molecular conformation (Pmol). In probability theory the chain
rule allows us to write Pmol accurately in terms of conditional
probabilities as follows:32

Pmol(C1. . .CN; R1. . .RN) = P1(C1|C2. . .CN;R1. . .RN)�P2(C2|C3. . .CN;
R1. . .RN)� � �PN�1(CN�1|CN; R1. . .RN)�PN(CN|R1. . .RN)

(1a)

=P1(C1|R1. . .RN)�P2(C2|C1;R1. . .RN)� � �PN�1(CN�1|C1. . .CN�2;
R1. . .RN)�PN(CN|C1. . .CN�1; R1. . .RN) (1b)

where Pi(Ci|Ci+1. . .CN; R1. . .RN) is the probability of finding the
ith residue in the conformational region Ci assuming that the
residues to the right of it are in the conformations Ci+1. . .CN. An
equivalent definition applies for the probability of finding the
ith residue conditioned to the conformations of the residues
placed to the left side of it. Of course, the terms right and left
are used assuming the usual convention of numbering the
residues from the N-terminal extreme into the C-terminal end.
We find it convenient to explicitly indicate that the probabilities
included in eqn (1a) and (1b) depend on the particular molecule
considered.

While eqn (1a) and (1b) are equivalent and precise, they are
not of practical use as they require knowledge of the conforma-
tional probability of any residue on the conformations of the
remaining residues in the chain, no matter how far apart they are
and, more importantly, they have to be evaluated for each
molecule studied. However, eqn (1a) and (1b) are adequate
starting points to introduce different approximations leading to
probabilistic expressions that can provide reasonable and prac-
tical descriptions of the molecular conformational ensemble.

The simplest, and more drastic, approach is to assume that
the conformational probability of any residue only depends on
its identity and is independent of the identities and conforma-
tions of the remaining residues, that is

Pi(Ci|Ci+1. . .CN; R1. . .RN) I Pi(Ci|Ri) (2)

Pi(Ci|C1. . .Ci�1; R1. . .RN) I Pi(Ci|Ri) (3)

Substitution of these expressions into eqn (1a) or (1b) provides

P
ð0Þ
molðC1 . . .CN ; R1 . . .RNÞ ¼

YN
i¼1

PiðCijRiÞ (4)

This approximation is the so-called Flory’s isolated-pair hypoth-
esis, which is well-known29,33–38 to provide a poor description
of the molecular conformational ensemble, since interresidual
interactions play an important role in the folding of a residue
by modifying its accessible conformational space.

An improved approximation can be developed by assuming
that the conformational probability of any residue depends on
the identity of its nearest neighbor residues but not on their
conformations. Thus, we write

Pi(Ci|Ci+1. . .CN; R1. . .RN) I Pi(Ci|Ri�1RiRi+1) (5)

Pi(Ci|C1. . .Ci�1; R1. . .RN) I Pi(Ci|Ri�1RiRi+1) (6)
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and obtain the following expression for the molecular confor-
mational probabilities

P
ð1Þ
molðC1 . . .CN ; R1 . . .RNÞ ¼ P1ðC1jR1R2Þ

�
YN�1
i¼2

PiðCijRi�1RiRiþ1Þ � PNðCN jRN�1RNÞ
(7)

P(1)
mol establishes that the secondary structure of the peptide

chain is the result of conformational preferences of amino
acid triads,34,39–54 instead of the isolated dynamic of each residue.

An even better approximation can be achieved by considering
that the conformation of a given residue depends also on the
conformation of its nearest neighbor residues

Pi(Ci|Ci+1. . .CN; R1. . .RN) I Pi(Ci|Ci+1; Ri�1RiRi+1) (8)

Pi(Ci|C1. . .Ci�1; R1. . .RN) I Pi(Ci|Ci�1; Ri�1RiRi+1) (9)

which leads to the expression

The equivalence between eqn (10a) and (10b) is provided by the
fundamental law of conditional probabilities P(A|B)P(B) = P(B|A)P(A).

The above procedure can be systematically extended by includ-
ing the dependencies of the conformational preferences of residues
on the identity and conformation of more distant residues. For-
mally, the resulting molecular conformational probabilities will be
closer to the accurate result of eqn (1a) and (1b) in each step.
However, the more dependencies that are included in the prob-
ability expressions, the more questionable their practical use will be
since the conditional probabilities have to be calculated from limited
sets of data provided by MD simulations or structure-encoding coil
databases.29 Each time an additional dependency is included, the
available data needed for the calculation of the conditional prob-
abilities are further fractionated compromising their accuracy. Never-
theless, P(1)

mol and P(2)
mol provide good descriptions of the molecular

conformational ensemble of peptides with IDRs as shown below.
We note that previous works29,30 have proposed the use of

probability terms depending simultaneously on the conformations
of both nearest neighbor residues, that is Pi(Ci|Ci�1Ci+1, Ri�1RiRi+1),
to build conformational ensembles of IDRs. These kinds of terms
are absent in P(0)

mol and P(2)
mol because of the structure of the original

accurate probabilistic expression given in eqn (1) where the indivi-
dual probabilities of every residue only depend on the conforma-
tions of its neighbors placed on its left or right side.

In addition, some works have proposed the use of probability
terms based on dimers.28,30,31 In particular Cukier28 has
proposed evaluating the molecular conformational probabilities
through the following expression

where it is certainly assumed that the conformational probabil-
ities of a residue depends on the identity of the nearest neighbor
residue placed to the left, but is completely independent on the
right-side residue identity. Therefore, Cukier’s equation differs
from eqn (7) where the dependence on the identity of both
nearest neighbour residues is taken into account. Although this
contradicts the experimental findings30 that the conformational
preferences of a residue depend on the identity of its two nearest
neighbor residues, we discuss this issue in our numerical tests
for the sake of completeness.

2.2 MD simulations

MD simulations of peptides with sequences taken from the C-
terminal (CT) and the proline rich (PR) IDR domains of p5355

were carried out in order to test the reliability of the molecular
conformational ensembles provided by the different approxima-
tions described in the previous section (see Table 1). Since the
number of molecular conformations increases quickly with the

number of residues, a first set of calculations was performed with
peptides including only six residues for which the converged
results could be extracted for the molecular conformational
populations. These six-residue peptides are heterogeneous in their
sequences, thus providing a good test set. Additionally, two
peptides with 20 residues were included in our study. They have
been chosen for their different characters. Peptide 20a is hetero-
geneous in its sequence while peptide 20b is rich in proline and
alanine, so that similar amino acid triads appear along its chain
allowing us to directly test some of the approaches proposed.

MD simulations were carried out with the molecules dissolved
in water using the GROMACS package v2021.2.56,57 Each solute
molecule was surrounded by a number of water molecules ran-
ging from 1400 to 12 000 (depending on the length of the peptide)
and placed in a cubic box of a size chosen to reproduce the
experimental density of the liquid at room temperature. All the
molecules were described using the CHARMM36m58 force field
and the flexible TIP3P model was used for the solvent water

Table 1 Peptides analyzed in the present work

Label Sequencea
p53
domain

Residue
numbers Nconf.

b

6a AHSSHL CT 364–369 729
6b KSKKGQ CT 370–375 729
6c STSRHK CT 376–381 729
6d KLMFKT CT 382–387 729
6e EGPDSD CT 388–393 486
20a AHSSHLKSKKGQSTSRHKKL CT 364–383 B3.5 � 109

20b RVAPAPAAPTPAAPAPAPSW PR 72–91 B2 � 108

a All peptides were blocked using acetyl and N-methyl groups. b Number
of molecular conformations.

P
ð2Þ
molðC1 . . .CN ; R1 . . .RNÞ ¼ P1ðC1jR1R2Þ �

YN�1
i¼2

PiðCijCi�1; Ri�1RiRiþ1Þ � PNðCN jCN�1;RN�1RNÞ (10a)

¼ P1ðC1jC2;R1R2Þ �
YN�1
i¼2

PiðCijCiþ1; Ri�1RiRiþ1Þ � PNðCN jRN�1RNÞ (10b)

PCukier
mol ðC1 . . .CN ; R1 . . .RNÞ ¼ P1ðC1jR1Þ �

YN
i¼2

PiðCijRi�1RiÞ

(11)
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molecules. This force field has been shown59,60 to provide a good
representation of proteins with IDRs. In any case the conforma-
tional preferences of the nearest neighbor residues are driven by
geometric and steric constraints which are taken into account in
all of the force fields commonly used to describe IDRs so that the
main conclusions of this work are not compromised by the choice
of the force field. Periodic boundary conditions were imposed in
the simulations using the Particle–Mesh Ewald method to treat the
long-range electrostatic interactions. The equations of motion were
integrated using a time step of 0.5 fs. All simulations were carried
out in a NVT ensemble at 298 K by coupling to a thermal bath.

Every system was equilibrated following a two-step process.
In the first step, the system was propagated during 2 ns at 500 K
to allow an extensive exploration of the molecular conforma-
tional space. In the second step, the system was equilibrated at
298 K over 5 ns. This procedure was repeated 300 times for
every molecule. Each of these 300 initial configurations were
propagated during 10 ns generating the same number of
trajectories. During these production runs, the values of the
dihedral angles were written every 5 fs. This computational
strategy based on the use of many different starting conforma-
tions in short runs instead of a single starting structure in a
long run24 allowed us to obtain thermally and conformationally
equilibrated systems for the six-residue peptides as tested by the
convergence study of the conformational ensembles (see Section 3).
In the case of the 20aa peptides, we performed further analysis
of the conformational distribution of the starting structures by
evaluating the end-to-end distance and the radius of gyration
(see Fig. S1, ESI†). The statistical distribution of these collective
variables confirms that the conformational ensemble of the starting
structures is broadly distributed. We should note that even if some
conformations at 500 K might not be representative of the room
temperature ensemble, the lack of kinetic traps in IDRs due to their
dynamic nature guarantees a fast transition towards room tem-
perature conformations during the second equilibration step.

2.3 Conformational regions

In order to keep the number of molecular conformations
tractable we follow Estaña et al.61 and simplify the structural
classification of the conformational space of each residue by
dividing it into three regions H, E and g according to the values
of the dihedral angles (f,c). The only exceptions were glycine
and proline that show characteristic behaviours.62 In the case of
glycine, three different conformational regions were considered
but different from the other residues and only two for proline.
Details of the definition of the conformational regions are given
in Fig. 1 and Table S1 (ESI†).

2.4 Comparison between ensembles

A conformational ensemble is characterized by the values of the

probabilities of each molecular conformation fPmolðCjÞgNconf
j¼1 ,

where Cj = (C1C2. . .CN) is a given molecular conformation and
Nconf is the total number of molecular conformations. In this
work, we consider three different conformational ensembles.
The first one is simply obtained from the MD simulations by

counting how many times a given molecular conformation
appears and it is represented as {Psim

mol(Cj)}. The probabilistic

Fig. 1 Definition of the conformational regions in the Ramachandran plot
for residues (a) glycine, (b) proline, and (c) all others. Region g comprises all
the remaining dihedral angle values excluded by the previously defined
regions. Region H (helical) includes aR and a’ conformations. Region E
(extended) includes pPII and b conformations. Probabilities have been
calculated by dividing the (f,c) conformational space into a 11 � 11 grid.
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ensembles {P(1)
mol(Cj)} and {P(2)

mol(Cj)} are generated using eqn (7)
and (10a) and (10b) respectively, where the probabilities for
each residue are again evaluated from the MD simulation data
by counting. Let us recall that we use in this paper the terms
probability and population of a molecular conformation as
equivalent, with the only difference being that the probabilities
are normalized and the populations are given in percentages.

In order to measure the similarity between two conforma-
tional ensembles {Pmol} and {P0mol} we use different scores.63

The simplest one is the Pearson correlation coefficient (PCC
or r) using xj = Pmol(Cj} and yj = P0mol(Cj} as variables. However,
the use of PCC may be compromised when the set of values
include results of very different magnitude, as is the case for the
conformational populations, leading us to underestimate the
contribution of the smallest values. Therefore, we also include
the Jensen–Shannon divergence63 (JSD) a symmetrized and
smoothed version of the Kullback–Leibler divergence (KLD)
given by

JSDðfPmolg; fP
0
molgÞ ¼

1

2
KLD fPmolg;

fPmolg þ fP
0
molg

2

 !

þKLD fP 0molg;
fPmolg þ fP

0
molg

2

 !

(12)

where

KLDðfPAg; fPBgÞ ¼
XNconf

j¼1
PAðCjÞ ln

PAðCjÞ
PBðCjÞ

(13)

JSD is well-defined even when one molecular probability is zero
in one ensemble and nonzero in the other.

In order to evaluate the performance of the probabilistic
conformational ensembles {P(1)

mol(Cj)} and {P(2)
mol(Cj)} to repro-

duce the results of the simulations {Psim
mol(Cj)} two studies are

required. Firstly, we need to establish the degree of conver-
gence of any conformational ensemble with respect to the
accumulated time of the trajectories used to calculate it. For
instance, let us assume that we have run a total of 300 trajectories
and want to measure the reliability of the conformational ensem-
bles obtained by using only 5 trajectories. We divide the 300
trajectories in 60 groups of 5 trajectories and evaluate the average
similarity score (PCC or JSD) by taking a high enough number of
couples of groups (for instance 1–2, 3–4, 4–5, . . .,59–60). By
considering groups of increasing size, we can fix the accumulated
time required for a given conformational ensemble to be con-
verged. Thus we established that a total of 3 ms of accumulated
time is required to reach convergence in the {Psim

mol(Cj)} conforma-
tional ensembles of the molecules with 6 residues.

Secondly, we need to evaluate the ability of the probabilistic
conformational ensembles calculated using only a fraction of the
total accumulated time, to reproduce the converged {Psim

mol(Cj)}
results. We will follow a similar procedure to that described
above by dividing the trajectories into groups and evaluating the
average similarity score between each group and the converged
{Psim

mol(Cj)} results. By considering groups of increasing size, we

determine the accumulated time required to obtain {P(1)
mol(Cj)}

and {P(2)
mol(Cj)} ensembles in agreement with the {Psim

mol(Cj)} con-
verged results.

In the case of the polypeptides with 20 residues, it is
computationally impossible to reach convergence in the {Psim

mol

(Cj)} conformational ensembles due to the huge number of
different molecular conformations. We then adopt a strategy
based on considering all of the hexads of consecutive residues
present in the molecule (1–6, 2–7,. . ., 14–19, 15–20). The con-
vergence tests previously described are applied to each hexad
and the average value of their similarity scores are considered
as a measure of the resemblance between conformational
ensembles. We note that this analysis is related to the hier-
archical chain-growth approach recently proposed24,64 in which
the full-length molecule is split into overlapping fragments
which can be sampled extremely in MD simulations.

Overall, our analysis revealed that the use of JSD or PCC scores
did not alter at all the trends and conclusions. Accordingly, we
carry out the convergence analysis using the JSD scores and use
the PCC score to describe the representativity of the probabilistic
conformational ensembles.

3 Results and discussion
3.1 First insights into the influence of neighbor residues

The particular amino acid sequence of the N-terminal p53 (p53-PR)
domain, rich in proline (Pro) and alanine (Ala) residues, gives
us the opportunity to explore the potential influence of the
neighbor residues in the conformational population of IDR
amino acids. The evaluation of seven Pro, four of them in APA
triads and three of them changing one of the Ala neighbors by
Serine (Ser) or Threonine (Thr) were selected for the analysis
(see Fig. 2a). The conformational ensemble of p53-PR residues
was obtained from MD simulations (see Methods 2.2) and
the populations of the different conformational regions for
Pro were evaluated. The results in Fig. 2a first indicate that
Pro residues in the APA triads have similar conformational
populations. In addition, changing the right Ala neighbor
by Ser barely modifies the conformational ensemble of Pro.
However, including a Thr as a neighbor, either on the left or
right side, significantly modifies the conformational ensemble
populations of Pro.

The conformational ensembles of two Ala residues in PAA
triads (see Fig. 2a) were also analyzed, and it was found that
they have a similar population distribution. Regretfully, other
Ala residues in the p53-PR domain that have Pro as a right
neighbor, such as PAP, AAP, or VAP triads, are not suitable for
comparison, since residues preceding Pro have a particularly
restricted Ramachandran plot.62

The 364–383 sequence of the C-terminal p53 domain (p53-
CT) has two additional examples of residues with similar
neighbors: (i) two Lysine (Lys) residues in the SK372K and
HK381K triads having both Lys on the right and Ser or Histidine
(His) on the left, and (ii) two Ser residues in the HS366S and
SS367H triads that swap the neighboring Ser and His on the left
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and right side. A similar evaluation of the conformational
probabilities shows that these differences in the neighbor
identities or their left/right position significantly modify the
population distribution in these residues (see Fig. S2a and b,
ESI†). Moreover, the population distribution of Ser in the
HS366S triads was evaluated for different neighbor conforma-
tions on the right and left sides, just to confirm their influence
(see Fig. S2c, ESI†), as already noted in previous studies.29

In order to avoid the selection of the conformational regions
being a factor that influences the analysis, the full conforma-
tional Ramachandran diagrams of p53-PR prolines were evaluated
and compared. Following the approach of previous works,63,65 a
Jensen–Shannon divergence test (see the Methods section) between
the Ramachandran diagrams of each Pro couple was performed
(see Fig. 2b) to measure the similarity between them. The higher
divergence values that are obtained between Pro having Thr or Ala
neighbors just confirm numerically the differences observed in the
Ramachandran diagrams in Fig. 2c. The Ramachandran diagrams
of the other p53-PR Pro are collected in Fig. S3 (ESI†).

Overall, this comparison analysis is a simple and straight-
forward way to visualize the influence of the identity and the
conformation of the neighbor residues on the conformational
distribution of a certain amino acid. To confirm the general
statement that the identity of the amino acid triads rules the
conformational ensemble of the central residue of the triad, the
previous analysis should be obviously extended to all amino
acid combinations. Nevertheless, we have indeed shown that the
identity of neighbour residues, their position on the left/right
side and their conformation may significantly affect the con-
formational populations of the central residue. Moreover, our
results align with previous computational evidence that high-
lights the influence of the nature and conformation of the
nearest neighbour residues in the conformation probability
distribution of the central amino acid.36–38 Accordingly, previous
approaches that ignore, even partially, these considerations

include a systematic error in the evaluation of the conforma-
tional populations.28,30

3.2 Using short peptides for an accurate evaluation of the
probabilistic conformational ensembles

The number of molecular conformations defined by all the
possible combinations of residue conformations grows expo-
nentially with the number of residues (see Table 1), and so do
the computational cost required to generate by MD simulations
converged {Psim

mol(Cj)} conformational ensembles that can be
used as patterns to measure the quality of the approximate
{P(1)

mol(Cj)} and {P(2)
mol(Cj)} probabilistic ensembles. In practice, it

is impossible to reach convergence in the populations of the
molecular conformations of the polypeptide with 20 residues
included in this study. Nevertheless, one can mitigate the compu-
tational cost by studying short peptides that still conserve their
intrinsic disorder nature. Thus, the CT domain of p53 was split in
5 peptides of 6 amino acids in length and each of their conforma-
tional ensembles generated by MD was evaluated. To compare
the performance of the approximations made in other peptides
that preferentially populate a certain conformation, the 6-aa poly-
Alanine peptide was also included in our study.

The region 376–381 of the p53-CT domain (see Fig. 3a) was
selected as a representative example among all the analyzed
peptides. The first analysis focuses on the convergence of the
conformational ensembles obtained in the simulations and
those derived from probabilistic expressions. This was evalu-
ated by using the Jensen–Shannon divergence (JSD) protocol as
proposed by Tiberti et al.65 This descriptor shows how similar
the probabilities ensembles are that are obtained from two
different sets of trajectories at equal accumulated simulation
times (see the Methods section 2.4 for a more detailed descrip-
tion). While the JSD scores have a difficult simple geometric
interpretation, as previously indicated by Lindorff-Larsen
et al.,63 the analysis of the evolution of the JSD scores along

Fig. 2 Conformational probabilities of proline and alanine residues that have one or two similar neighbour residues in the N-terminal disordered region
of p53 (72–91). (a) Population of the conformational regions of 7 different Pro residues and 2 different Ala residues. (b) Jensen–Shannon divergence
evaluation between the Ramachandran diagrams of the seven Pro residues. (c) Conformational Ramachandran maps of Pro in AP77A and AP80T triads.
Inset: Graphical representation of the p53-PR region.
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the simulation until they achieve the lowest asymptotic value is
a good convergence predictor. Fig. 3b shows that the conforma-
tional probabilities obtained from the {P(1)

mol(Cj)} and {P(2)
mol(Cj)}

probabilistic conformational ensembles achieve convergence
at times of around 0.7–1 ms, while the JSD score from the
{Psim

mol(Cj)} ensemble is still decreasing at 1.5 ms.
The accuracy of the probabilistic methods was checked by

employing the Pearson coefficient and the populations of the
{Psim

mol(Cj)} conformational ensembles obtained from the 3 ms
MD simulations were used as the reference. The results plotted
in Fig. 3c show that at short simulation times, i.e. 100 ns, the
probabilistic {P(1)

mol(Cj)} and {P(2)
mol(Cj)} conformational ensem-

bles give better predictions than those obtained with {Psim
mol(Cj)}.

Only at longer times of 1 ms, do the {Psim
mol(Cj)} results outperform

those obtained using the probabilistic expressions. It is notice-
able that the convergence of the accuracy of the probabilistic
conformational ensembles calculated using the probabilities in
the P(1)

mol and P(2)
mol expressions is faster than the results of the

direct counting method ({Psim
mol(Cj)}) although they use the same

set of data. It is also worth noticing that the results obtained with
P(1)

mol have a slightly better performance than the P(2)
mol ones before

achieving simulation times of B500 ns. This is due to the fact
that the number of probabilities by residue to be converged in
the calculation of P(1)

mol is substantially smaller than that of P(2)
mol

due to the use in this last case of probabilities that depend on
the conformation of the neighbor residues. At the temporal

region of 1–1.5 ms, in which all conformational probabilities
achieved convergence, the {Psim

mol(Cj)} results are obviously the
most accurate. Nevertheless, the results obtained with both
approximate expressions can be considered very good predic-
tions, as shown by the Pearson correlation coefficient values
close to 1 and the high success rates of prediction of above 85%.
The JSD descriptor was additionally employed to evaluate the
quality of the approximations, obtaining similar results (Fig. S4,
ESI†). Moreover, a direct comparison between the conformational
populations of the accurate {Psim

mol(Cj)} ensemble and the probabil-
istic ensembles at 3 ms (see Fig. 3d) confirms the linear correlation
and the correct predictions of the most populated conformation
ensembles. The same good performance has been obtained for
the other peptide 6-aa stretches of CT-p53 (Fig. S5–S8, ESI†).

A similar conformational analysis performed with the Ala
peptide (Fig. S9, ESI†) shows that the P(1)

mol approach under-
estimates the values of the most populated conformation,
which corresponds to the all-extended conformation, while
the same population calculated using the P(2)

mol expression is
correctly predicted. This can be explained by considering the
cooperative effect along the poly-Ala peptide chain that favors
the extended conformation of a residue if the neighbors are
already in the extended conformation.66 This effect may be
characteristic of protein sequences that preferentially populate
a certain structural conformation, such as the poly-Ala peptide.
Considering then the influence of the neighbor conformations

Fig. 3 Comparison of different conformational probability evaluation methods in the region 376–381 of CT p53 domain. (a) Graphical representation of
the 6-aa peptide S376TSRHK381 of p53-CT. (b) Convergence evaluation of the conformational probabilities by computing the Jensen–Shannon
divergence as a function of the accumulated time of the trajectories. (c) Accuracy evaluation of the probabilistic methods by using the Pearson
coefficient (top) and the success rate of the most populated conformations accounting for the 75% of the total population of the peptide (bottom).
(d) Comparison between the accurate conformational populations obtained from the simulations and those obtained from the approximate expressions
P(1)

mol and P(2)
mol.
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must be essential for an accurate prediction of the conforma-
tional probabilities, while for intrinsic disordered fragments, in
which the distribution of conformational populations is sub-
stantially wider, the cooperative effect is minor and the P(1)

mol

probabilities are indeed a good approximation.
In a nutshell, short peptides from IDRs have allowed us to

examine the performance of two probabilistic approximations
by direct comparison with the accurate computational results.
We consider that this is a more appropriate method to evaluate
in detail the accuracy of probabilistic predictors than the
comparison of different magnitudes (J couplings, RDCs, . . .)
obtained as averaged data of the probabilistic ensembles with
the experimental data. Indeed, the proposed probabilistic
approximations could be applied with any other force fields
and MD simulation approaches, as all of them use similar
potential functions to evaluate the intra- and inter-molecular
non-bonded interactions responsible of the conformational
distribution of proteins. The use of the probabilistic approxi-
mated expressions P(1)

mol and P(2)
mol to build the conformational

ensembles using the data from MD simulations shows huge
potential, since the computed probabilities achieve conver-
gence at a high rate (even 100 ns could be enough) while
maintaining accurate results.

3.3 Conformational probabilities of intrinsic disordered
regions: CT and PR p53 domains

To study the performance of the probabilistic approaches in
standard IDRs that contain tens of residues, MD simulations of
the p53 IDRs proline-rich and C-Terminal regions were performed

(see Table 1 and Fig. 4). Following the analysis protocol (see
Section 2.4), a convergence study was first performed. The results
in Fig. 4a and b clearly show that the conformational populations
calculated directly from the simulations are far from achieving
convergence at the considered simulation times. In contrast,
populations obtained with the P(1)

mol and P(2)
mol approximations are

already converged within a few hundreds of nanoseconds. This
result can be explained by considering the expressions P(1)

mol and
P(2)

mol in eqn (7) and (10a) and (10b), respectively, which are
calculated as the product of the conformational probabilities of
each residue conditioned by its first neighbors (either considering
only their identity or both their identity and conformation). Thus,
the convergence of the probabilistic conformational ensembles
of the whole peptide is achieved in these approximations if
the conformational probabilities of each residue are correctly
converged, and the convergence of these probabilities by residue
is basically independent of the peptide length. This result empha-
sizes a fundamental advantage of the use of the probabilistic
ensembles, that is, molecular conformations which might not be
present in the MD trajectories can be properly predicted.

The lack of convergence of the Psim
mol probabilities in the 20-aa

peptides prevents the use of the direct comparison method to
evaluate the prediction accuracy of the probabilistic approxi-
mations. We then used the protocol detailed in Section 2.4, in
which the conformational populations of any 6-aa segment
within the peptides p53-PR and p53-CT are evaluated and the
analysis considers the convergence of the populations for these
short segments. In that case, the comparison of the perfor-
mance of the probabilistic approximations can be performed by

Fig. 4 Comparison of the different conformational probability evaluation methods in the regions 72–91 (p53-PR) and 362–383 (p53-CT) of p53.
Convergence evaluation of the conformational probabilities by computing the Jensen–Shannon divergence as a function of the accumulated time of the
trajectories for (a) p53-PR and (b) p53-CT peptides. Accuracy evaluation of the probabilistic methods by using the Pearson coefficient for (c) p53-PR and
(d) p53-CT peptides. Inset: Graphical representation of the p53 protein model obtained from AlphaFold67 with regions p53-PR and p53-CT highlighted in
yellow and cyan, respectively.
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considering the average of all 6-aa segments contained in the
p53-PR and p53-CT domains. The Pearson coefficient values in
Fig. 4c and d show that the approximations P(1)

mol and P(2)
mol

predict with a high accuracy the probabilities of the conforma-
tional population ensembles for both p53 IDRs. As for the
previous results obtained for short peptides, high prediction
accuracies are already achieved by the probabilistic approxima-
tions at simulation times of a few hundreds of nanoseconds.
Moreover, the JSD descriptor was also employed for the com-
parison, obtaining the same conclusions (see Fig. S10, ESI†).

Although the comparison between the probabilistic methods
of the population distributions of the whole 20-aa IDRs is
unapproachable, as already discussed, the strategy of evaluat-
ing the accuracy in 6-aa stretches belonging the IDRs confirms
the excellent performance of the P(1)

mol and P(2)
mol approximations

in IDRs. According to our results, IDRs residue neighbors
farther away in sequence than the first neighbors have a lower
influence on the conformation probability distribution of each
residue. This seems reasonable, since long-range interactions
between amino acids are intimately related with the folding
stability of polypeptides,68,69 and IDRs lack a well-defined
folded structure. What makes IDRs difficult to study through
direct analysis with MD simulations, at the same time facili-
tates their study through probabilistic conformational ensembles,
thus opening the door to different applications.

3.4 Applications: MoRFs and free energy evaluation

It is discussed61,70 that a possible mechanism of binding
between IDRs adopting a certain secondary structure and their
protein target could occur through Molecular Recognition
Features (MoRFs). MoRFs are structural motifs transiently
stable in solution that could already interact with the protein
target, acting as nucleation sites for completing the IDR folding
by inducing fit. The first application deals with the evaluation
of the conformational probabilities of this type of structural
signatures, as previously suggested by Estaña et al.61 For
example, 11 residues of the 22a p53-CT domain folds into an
alpha-helix secondary structure during the binding of
S100B(bb) dimer (PDB 1dt7, see Fig. 5a). The conformational
probability of the MoRF composed by the 3-aa signature {aaa}
from the 3-ms MD conformational ensemble was evaluated by
using the P(2)

mol expression (see Fig. 5b). According to these

results, the aaa-MoRF located in K382LM384 shows the highest
probability value inside the a-helix region. Interestingly, other
MoRFs at the N-terminal end also show high probability values,
although their role in the binding mechanism should be
thoroughly investigated. In short, this example shows the great
advantage of employing the probability approximate expres-
sions, since the relative low computational cost allows the
exhaustive explorations of MoRFs (much more than in the
simple example). The converged probability of each MoRF is
therefore guaranteed, in contrast with standard evaluations,
which require an extraordinary computational effort, as in the
work of Fadda et al.70

The second application is related with the exploration of the
conformational free energy surface of the IDRs. To do so, the
conformational space of the peptide is evaluated in more detail,
by defining a grid of size 10 � 10 in the dihedral angle Rama-
chandran map of each residue providing 360 � 360 microstates
per residue. The probability of each molecular conformation is
expressed in terms of the microstates of every residue using the
expression of P(1)

mol in eqn (7). Then, the free energy of each
molecular conformation can be calculated as follows

F
ð1Þ
mol ¼ �kT lnðPð1ÞmolÞ ¼ �kT �

XN
i¼1

lnðPiðCijRi�1RiRiþ1ÞÞ (14)

In other words, the free energy of the peptide is expressed as the
sum of the free energies of the microstates of each residue. As the
dihedral angles of each residue evolve along the MD trajectory,
they will visit the different cells in the Ramachandran grid and
therefore, F(1)

mol will evolve.
As an example, in Fig. 6a the time evolution of the molecular

free energy of the domain p53-CT 382–393, expressed with
respect to the molecular free energy average in all trajectories,
is displayed. The evolution of F(1)

mol goes through different local
maxima and minima. If we define a conformational change in a
residue as the dihedral angle transition between two broad
conformational regions defined in Table 1, the different con-
formational changes along the trajectories can also be located
(blue circles in Fig. 6a). Interestingly, we observed that the
conformational changes occur mostly at high values of F(1)

mol.
To analyze quantitatively this behavior, we computed the

average values of F(1)
mol during all possible conformational

Fig. 5 Evaluation of MoRFs probabilities in p53-CT. (a) Graphical representation of the p53-CT domain (367–388) bound to the S100B(bb) dimer (PDB
1dt7). (b) Probabilities of MoRFs {aaa} along the CT-p53 domain in the 3-ms trajectory.
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changes that take place in each residue of the p53-CT domain.
The results in Fig. 6b just confirm that the average values of the
peptide free energy in the conformational transition of any
residue are always higher than the free energy average value.
The main contribution to each molecular free energy value
corresponds to the residue that performs the conformational
change, while the other contributions of the remaining amino
acids are usually negligible (data available in the ESI†). Moreover,
certain conformational changes are shown to be energetically
more favored than others, depending on the residues and the
type of conformational change.

4. Conclusions

In this work, we have shown that P(1)
mol and P(2)

mol expressions
describe properly the conformational ensembles of IDRs and
that they can be extracted from reasonable short MD simulations.
Indeed, one of the greatest advantages of the probabilistic expres-
sions is that their convergence rates are independent of the IDR
protein length, as they are calculated considering only the identity
and conformation of the residue neighbours. Therefore, the gain
in MD computational time of the proposed approach will grow
with the length of the considered IDRs. Consequently, they can be
used to evaluate the probabilities of molecular conformations that
are rarely visited, namely rare events, without carrying out com-
putationally expensive MD simulations. While our study is based
on a coarse grain analysis of the conformational space of each
residue in order to obtain converged molecular conformational

ensembles the probabilistic expressions can be straightforwardly
extended to a fine grain analysis providing a rigorous framework
to build conformational ensembles from the data included in
structure-encoding coil databases using previously developed
methodologies.29,71 The remarkably fast convergence and the
good accuracy of the probabilistic conformational ensembles
may allow us to explore thoroughly the mechanisms of binding
of IDRs, as well as the impact of mutations in their functionality.
As shown in recent works,50,72 there is still room for improvement
in the accuracy of most of current force fields to represent
accurately the conformational populations of IDRs. Nevertheless,
the improvement towards more realistic force fields for IDRs
is a work-in-progress in the community.59 Moreover, the results
obtained in this work encourage future works to develop MD-
based conformational ensemble libraries of amino acid triads,
which will help to improve the performance of new machine
learning predictors. The same approach should be equivalently
useful for the study of the conformational ensembles of unfolded
peptides and proteins.
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57 S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar,
R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson and
D. van der Spoel, et al., GROMACS 4.5: A High-Throughput
and Highly Parallel Open Source Molecular Simulation
Toolkit, Bioinformatics, 2013, 29, 845–854.

58 J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de
Groot, H. Grubmueller and A. D. MacKerell Jr., CHARMM36m:
an improved force field for folded and intrinsically disordered
proteins, Nat. Methods, 2017, 14, 71–73.

59 J. Huang and A. D. MacKerell Jr., Force field development
and simulations of intrinsically disordered proteins, Curr.
Opin. Struct. Biol., 2018, 48, 40–48.

60 P. Robustelli, S. Piana and D. Shaw, Developing a molecular
dynamics force field for both folded and disordered protein
states, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, E4758–E4766.

61 A. Estaña, A. Barozet, A. Mouhand, M. Vaisset, C. Zanon,
P. Fauret, N. Sibille, P. Bernadó and J. Cortés, Predicting
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