Water uptake and energetics of the formation of barium zirconate based multicomponent oxides†
Abstract
A group of multi-component oxides based on BaZrO3 have been prepared using a solid-state reaction method and examined in terms of their water uptake and thermodynamics of formation. Depending on the type and amount of acceptor substitution, the synthesized compounds exhibit various proton defect concentrations, reaching up to 0.2 mol/mol for a compound containing 10 different elements in the B-sublattice, where 50% of them are acceptors. For the most promising materials, van’t Hoff plots were created and the enthalpies and entropies of hydration were calculated. At higher temperatures, these parameters do not differ from the values for the reference yttrium doped barium zirconate. However, at lower temperatures they are more negative, indicating a more exothermic process of proton incorporation.