A semiconductor Sc2S3 monolayer with ultrahigh carrier mobility for UV blocking filter application†
Abstract
For humans, ultraviolet (UV) light from sun is harmful to our eyes and eye-related cells. This detrimental fact requires scientists to search for a material that can efficiently absorb UV light while allowing lossless transmission of visible light. Using an unbiased first-principles swarm intelligence structure search, we explored two-dimensional (2D) Sc–S crystals and identified a novel Sc2S3 monolayer with good thermal and dynamical stability. The optoelectronic property simulations revealed that the Sc2S3 monolayer has a wide indirect bandgap (3.05 eV) and possesses an ultrahigh carrier mobility (2.8 × 103 cm2 V−1 s−1). Remarkably, it has almost transparent visible light absorption, while it exhibits an ultrahigh absorption coefficient up to × 105 cm−1 in the ultraviolet region. Via the application of biaxial strain and thickness modulation, the UV light absorption coefficients of Sc2S3 can be further improved. These findings manifest an attractive UV blocking optoelectronic characteristic of the Sc2S3 configuration as a prototypical nanomaterial for the potential application in UV blocking filters.