Janus zirconium halide ZrXY (X, Y = Br, Cl and F) monolayers with high lattice thermal conductivity and strong visible-light absorption†
Abstract
In this work, the structural, mechanical, and electronic properties of Janus zirconium halide monolayers have been systematically investigated using the first-principles calculations. After verifying the mechanical and dynamical stability of these monolayers, their electronic band structures have been predicted. These Janus monolayers have band gaps of 1.51–1.96 eV, which indicates their suitability for visible light absorption. The relaxation time and mobility of charge carriers are estimated using deformation potential theory, and the mobility of these monolayers has been predicted to be of the order ∼102 cm2 V−1 s−1. The lattice thermal conductivity has been calculated by solving the phonon Boltzmann transport equation using ShengBTE software. At 300 K, the in-plane lattice thermal conductivity has values of 76.94, 54.18, and 95.87 W m−1 K−1 for ZrBrCl, ZrBrF, and ZrClF monolayers, respectively. The higher group velocity and small anharmonic three-phonon scattering rate are the main reasons for the high lattice thermal conductivity of the ZrClF monolayer. The real and imaginary parts of the dielectric function are calculated to find the absorption coefficients and these monolayers have a high absorption coefficient of the order ∼106 cm−1 in the visible light range. Our results show that Janus zirconium halide monolayers are potential candidates for optoelectronic and photocatalytic applications.