Issue 6, 2023

Starvation-assisted and photothermal-thriving combined chemo/chemodynamic cancer therapy with PT/MR bimodal imaging

Abstract

Chemodynamic therapy (CDT) reflects a novel reactive oxygen species (ROS)-related cancer therapeutic approach. However, CDT monotherapy is often limited by weak efficacy and insufficient endogenous H2O2. Herein, a multifunctional combined bioreactor (MnFe-LDH/MTX@GOx@Ta, MMGT) relying on MnFe-layered double hydroxide (MnFe-LDH) loaded with methotrexate (MTX) and coated with glucose oxidase (GOx)/tannin acid (Ta) is established for applications in H2O2 self-supply and photothermal enhanced chemo/chemodynamic combined therapy along with photothermal (PT) /magnetic resonance (MR) dual-modality imaging ability for cancer treatment. Once internalized into tumor cells, MMGT achieves starvation therapy by catalyzing the oxidation of glucose with GOx, accompanied by the regeneration of H2O2, enabling a Fenton-like reaction to accomplish GOx catalytic amplified CDT. Moreover, MMGT manifests significant tumor-killing ability through improved CDT performance with outstanding photothermal conversion efficiency (η = 52.2%) under 808 nm laser irradiation. In addition, the release of Mn2+ from MnFe-LDH in a solid tumor can significantly enhance T1-contrast MR imaging signals. Combined with MnFe-LDH-induced PT imaging under 808 nm laser irradiation, a dual-modality imaging directed theranostic nanoplatform has been developed. The present study provides a new strategy to design H2O2 self-supply and ROS evolving NIR light-absorption theranostic nanoagent for highly efficient and combined chemo/chemodynamic cancer treatment.

Graphical abstract: Starvation-assisted and photothermal-thriving combined chemo/chemodynamic cancer therapy with PT/MR bimodal imaging

Supplementary files

Article information

Article type
Paper
Submitted
27 Nov 2022
Accepted
19 Jan 2023
First published
20 Jan 2023

Biomater. Sci., 2023,11, 2129-2138

Starvation-assisted and photothermal-thriving combined chemo/chemodynamic cancer therapy with PT/MR bimodal imaging

B. Zhu, M. Zhang, Q. Chen, Z. Li, S. Chen and J. Zhu, Biomater. Sci., 2023, 11, 2129 DOI: 10.1039/D2BM01944B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements