Multiple fluorescence and hydrogen peroxide-responsive properties of novel triphenylamine–benzothiazole derivatives†
Abstract
A novel fluorescent dye molecule – triphenylamine (TPA)–benzothiazole (BZT) – based on excited state intramolecular proton transfer (ESIPT) was prepared by the Suzuki coupling reaction. The photophysical property assay indicates that BZT-TPA appeared in distinguishable colors in mixed solvents with different water contents. Moreover, BZT-TPA exhibited observable AIE behavior. On this basis, a fluorescent probe BZT-TPA-BO was synthesized for detecting H2O2. This probe molecule was found to have excellent selectivity, rapid response, and good linear relationship (R2 = 0.989) for detecting H2O2 in aqueous medium. Through DFT calculation, fluorescence spectrum, nuclear magnetic titration and HR-MS, the mechanism of recognition of H2O2 by the probe BZT-TPA-BO is proposed. In addition, the probe BZT-TPA-BO to some extent exhibited better performance for detecting exogenous H2O2 in HeLa cells.