Cu/Au nanoclusters with peroxidase-like activity for chemiluminescence detection of α-amylase†
Abstract
Herein, a novel chemiluminescence method was developed for efficient and sensitive detection of α-amylase activity. α-Amylase is closely related to our life, and α-amylase concentration is a marker for the diagnosis of acute pancreatitis. In this paper, Cu/Au nanoclusters with peroxidase-like activity were prepared using starch as a stabilizer. Cu/Au nanoclusters can catalyze H2O2 to generate reactive oxygen species and increase the CL signal. The addition of α-amylase makes the starch decompose and causes the nanoclusters to aggregate. The aggregation of the nanoclusters caused them to increase in size and decrease in the peroxidase-like activity, resulting in a decrease in the CL signal. α-Amylase was detected by the CL method of signal changes caused by dispersion-aggregation in the range of 0.05–8 U mL−1 with a low detection limit of 0.006 U mL−1. The chemiluminescence scheme based on the luminol–H2O2–Cu/Au NC system is of great significance for the sensitive and selective determination of α-amylase in real samples, and the detection time is short. This work provides new ideas for the detection of α-amylase based on the chemiluminescence method and the signal lasts for a long time, which can realize timely detection.