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Towards therapeutic drug monitoring of antibiotic
levels – analyzing the pharmacokinetics of
levofloxacin using DUV-resonance Raman
spectroscopy†
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Therapeutic drug monitoring (TDM) plays an important role in clinical practice. Here, pharmacokinetics

has a decisive influence on the effective antibiotic concentration during treatment. Moreover, different

kinetics exist for different administration forms. Accordingly, adjusting the correct concentration depends,

in addition to gender, age, weight, clinical picture, etc., on the dosage form of the antibiotic. This study

investigates the capability of deep UV resonance Raman spectroscopy (DUV-RRS) to simulate the phar-

macokinetics of fluoroquinolone levofloxacin after two different administration forms (intravenous and

oral). Three different pre-processing methods were applied, and the best agreement with the simulation

was achieved using the extended multiplicative scatter correction. The resulting spectra were used for

partial least squares (PLS) regression and ordinary least squares (OLS) regression. The kinetic parameters

were compared with the simulated data, with PLS showing the best performance for intravenous adminis-

tration and a comparable result to OLS for oral administration, while the errors are smaller. The acquired

results show the potential of DUV-RRS in combination with PLS regression as a promising supportive

method for TDM.

Introduction

Studies suggest that up to 50% of critically ill patients are
underdosed with fixed-dose antibiotic regimens due to grossly
altered pharmacokinetics in critical illness and failure of
target attainment is associated with worse clinical outcomes.1

Therapeutic drug monitoring (TDM) guided antibiotic therapy
may be an appropriate strategy to overcome this pharmaco-
kinetic variability and the problem of underdosing. In this
process, serum antibiotic exposure is measured and dosing
can be adapted during therapy to ensure optimal exposure.2 In
this context, today’s well-established robust methods are

mainly chromatography-based3–7 and ensure sensitive detec-
tion of a specific group of drugs or a single antibiotic.8–12

However, these techniques are time-consuming and labor-
intensive, require large volumes for sample preparation
and processing and consume high amounts of organic
solvents.13,14 In addition, in some cases, samples must be for-
warded to a central laboratory for analysis, which may delay
the required results.15,16 An all-encompassing application
requires a rapid method with low sample demand and the
ability for multicomponent detection.

In this respect, Raman spectroscopy17,18 is a very promising
technique,19–25 as it is label-free and non-invasive,26–28 fast
and sensitive,29–32 and provides an extremely high chemical
selectivity33–41 and potential as a point-of-care technique. For
the evaluation of complex samples, e.g., human body fluids, a
simple ordinary least squares (OLS) analysis may lead to
insufficient results, and therefore multivariate data analysis
may be helpful. The most widely used techniques in chemo-
metrics for this task are principal component regression (PCR)
and partial least squares (PLS) regression.21,25,42–44

Another important piece of information resulting from
TDM is the time-dependent aspect of drug interaction in the
host body, known as pharmacokinetics.45 Depending on drug
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administration, specific kinetic models can be assumed,
which, in addition to kinetic time constants, provide deeper
insight into important parameters such as the bioavailability,
dose, and volume of distribution of antibiotics.46,47 These vari-
ables can be used to model the time-dependent interaction
of drugs, which in turn can be used to adjust and improve
antibiotic therapy. However, the pathology of critically ill
patients may cause physiological changes that alter their
pharmacokinetics48,49 and complicate the prediction of drug
exposure.50,51 These physiological changes may lead to under-
or overdosage, which carries the risk of treatment failure in
the case of underdosage and the risk of drug accumulation
and toxic side effects in the case of overdosage. Above all,
in vitro data show that sub-inhibitory antibiotic concentrations
can foster multidrug resistance.52–54 This necessitates robust,
rapid, and sensitive spectroscopic and analytical methods.

This work therefore aims to demonstrate the potential of
deep UV resonance Raman spectroscopy (DUV-RRS) in combi-
nation with PLS regression for monitoring of antibiotic
pharmacokinetics.

Materials and methods
Sample preparation

The fluoroquinolone levofloxacin (levofloxacin hydrochloride,
Santa Cruz Biotechnology Inc., Dallas, Texas USA, see Fig. 1)
was used without further purification. Starting from a 1 mM
stock solution, a dilution series of 0 µM–50 µM (hereafter

referred to as ccal) was prepared using ultra-clear water from a
feed system [SG Water GmbH, (Siemens, Barsbüttel, Germany)
with κ > 0.06 µS cm−1], followed by several concentrations from
0 µM to 26.37 µM (csim,int) and 21.97 µM (csim,o). These
samples were used for the calibration (ccal) and simulation of
two different kinetics (csim,int and csim,o), respectively. Here, 15
and twelve different concentration values representing specific
time points were taken from pharmacokinetic studies of
750 mg levofloxacin after intravenous55 and oral adminis-
tration,56 respectively. All standard compounds are >95% pure
as determined by HPLC analysis.

Spectroscopy

The deep UV resonance Raman spectra were acquired with a
Raman spectrometer (IsoPlane, Teledyne Princeton
Instrument, Trenton, USA) equipped with a UV laser. An exci-
tation wavelength of λexc. = 232 nm was applied (laser power:
42 mW at the sample). A 2400 g mm−1 grating and an exposure
time of 7.5 s (four accumulations) were used to measure five
replicate repetitions of each sample. To avoid any photo-degra-
dation during the measurements, the samples were constantly
stirred in a rotational cuvette.

The absorption spectrum was recorded from a 0.1 mM
aqueous solution of the antibiotic using a Cary 5000 system
(Varian, Darmstadt, Germany) with a step size of 1 nm and the
Fourier transform (FT) Raman spectrum of the solid was
recorded with a resolution of 4 cm−1 using a Nd:YAG laser
with an excitation wavelength of λexc. = 1064 nm, a laser power
of 500 mW, and 256 scan exposures, in combination with a
Ram II spectrometer (Bruker, Bremen, Germany).

Data preprocessing

All preprocessing and analysis of the raw Raman data were
performed with statistical programming GnuR 3.6.1.57 The
packages ‘signal’,58 ‘EMSC’,59 ‘Peaks’,60 ‘minpack.lm’,61

and ‘pls’62 were utilized and their functions were complemen-
ted by an in-house written procedure. First, the Raman
data were truncated to the wavenumber region of interest
(2000 cm−1–1000 cm−1), and a median filter (window = 3) was
applied for spike removal. Then, different algorithms were
tested for their results in predicting the sample concentration.
The treated Raman spectra were either baseline corrected
using the SNIP algorithm63 (iterations = 18, order = 2) and nor-
malized to the water band or scatter corrected using extended
multiplicative scatter correction (EMSC)64,65 (degree = 1) with
the median spectra of water as a reference or processed using
a combination of both methods.

For quantification, the difference spectra were calculated
using the median water spectra as a reference and a Gaussian
peak profile was fitted to the marker band at about 1400 cm−1.
The resulting peak intensities of the calibration samples were
correlated with the corresponding concentration (ccal),
showing a linear relationship (see Fig. 2A) that was used to
predict the simulated concentration (csim,int and csim,o). A rep-
resentation of the preprocessing workflow can be found in the
ESI (see Fig. S1†).

Fig. 1 Absorption spectrum of 0.1 mM aqueous solutions of levofloxa-
cin (A). The applied laser excitation wavelength λexc. = 232 nm and the
collected region of the Raman spectra are depicted as a vertical line and
a shaded portion, respectively. Resonance Raman spectra (B) of water (1)
and the highest concentration of levofloxacin used for calibration
(50 µM, 2) with its marker band at about 1400 cm−1.
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Furthermore, the preprocessed data were vector normalized
and partial least squares (PLS) regression66 was applied. The
optimal number of five components was calculated minimiz-
ing the root-mean-square error of prediction (RMSEP) via
100-fold cross-validation using the concentrations of the cali-
bration (ccal, see Fig. 2B). Here, the data were divided into train
(ccal,train, 80%) and test (ccal,test, 20%) data sets, showing a
good correlation (see Fig. 2C). This regression model was then
used for the prediction of the concentrations of the pharmaco-
kinetic simulations csim,int and csim,o, referred to as cpred,int and
cpred,o in the following.

Density functional theory calculation for vibrational
assignment of Raman marker bands

For a better understanding of the assignment and an interpret-
ation of the Raman marker bands used for the quantification,
the molecular structures were optimized and the vibrational
modes and Raman activities were calculated with density func-
tional theory (DFT) using Gaussian 09.67 The hybrid exchange–
correlation functional with Becke’s three-parameter exchange
functional (B3)68 slightly modified by Stephens et al.69 coupled
with the correlation part of the functional from Lee, Yang, and
Parr (B3LYP)70 and Dunning’s triple correlation consistent
basis sets of contracted Gaussian functions with polarized and
diffuse functions (cc-pVTZ)71 were applied. For alignment, the
wavenumber positions of the FT-Raman peaks (threshold: 20%
of the maximum intensity) were scaled to the vibrational fre-
quencies of the calculation. The frequency scaling factor was
calculated by minimizing the mean average error (MAE), and
an intensity correction was applied to the scattering activi-
ties.72 Finally, the scaled scattering activities were fitted with a
Gaussian peak profile with the median value of the full width
at half maximum (FWHM) of all experimental peaks investi-
gated to simulate Raman bands with finite resolution (see
Fig. S2†).

Results and discussion

Resonance Raman spectroscopy for simulation of
pharmacokinetic models

The excitation wavelength λexc. = 232 nm enables strong reso-
nance and sensitive detection of the fluoroquinolone levofloxa-
cin (see Fig. 1). As a proof-of-principle measurement, the phar-
macokinetics of an intravenous and an oral 750 mg dose of
levofloxacin were simulated with aqueous solutions of various
antibiotic concentrations csim,int and csim,o. First, the best pre-
processing routine had to be selected, i.e., baseline correction,
EMSC correction, or their combination, followed by two
different quantification approaches: OLS and PLS regression.

For the first regression model, the marker band was exam-
ined with a Gaussian peak profile. For a better understanding
of this Raman signal, DFT calculations were aligned with the
experimental FT-Raman spectra and their vibrational modes
were assigned. For levofloxacin, the vibration at about
1400 cm−1 can be construed as a combination of CH2-wagging
of the piperazine system and CH-bending vibration of the qui-
nolone ring (see Fig. 3). In this case, the fitted peak intensity
of the marker band of the dilution series was correlated with
their concentration, and the resulting linear regression model
was used to quantify the concentration of the simulated
samples (see Fig. 2A).

For the PLS regression model, the dimensions of the cali-
bration data set were reduced via the minimization of the
RMSEP. Then, the spectral data were divided into train
(ccal,train) and test (ccal,test) data sets. The error between the pre-
dicted (from regression with the training data) and the test
data set was calculated via 100-fold cross-validation, resulting
in an optimal number of five components (see Fig. 2B). When
correlating the predicted concentrations of the test set with
the adjusted concentrations, a good linear relationship was

Fig. 2 The calibration curve using the intensity of the Raman marker band of levofloxacin at about 1400 cm−1 showed a good correlation with the
concentration of the samples (ccal, A). For the prediction of the simulated concentrations via OLS regression, concentrations from 5 μM to 50 μM
were used. The PLS regression model was optimized by calculating the minimum error via 100-fold cross-validation, resulting in an an optimum
number of five components (big dot) for the prediction of the test data (ccal,test, B). With this value, a good relationship between the concentrations
of the training (ccal,train) and test data (ccal,test) could be achieved, with the respective values depicted in blue and orange (C).
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obtained (see Fig. 2C). With this optimized model, the concen-
trations of the simulated samples could be predicted.

As a marker for the ‘best’ model of the selection presented,
the RMSEP was calculated for the simulated sample concen-
trations csim,int and csim,o and their prediction resulting from
the regression model (cpred,int and cpred,o, see Table 1). It is
evident that the prediction of the intravenous model is
superior to that of the oral model, regardless of the regression
model and data treatment, and the OLS regression shows an
overall worse performance than the PLS regression. In
addition, the concentration of the EMSC data shows higher
similarities to the adjusted data, but the baseline correction
has a greater impact on the calibration and prediction result,
as the combined data treatment differs only slightly from the

baseline-corrected one. Therefore, in further evaluation, the
focus is on the EMSC data.

The limit of detection (LoD) may provide a possible expla-
nation for the differences in the performance of the models.
According to the IUPAC definition,73 the LoD is calculated
from the mean (c̄bl) and the standard deviation (σbl) of the
blank sample concentration:

LoD ¼ c̄bl þ 3 � σbl:

The LoD of the blank values of the PLS model is signifi-
cantly lower than that of the OLS model (see Table 1).
Therefore, the lower sample concentrations could not be satis-
factorily determined for the latter, resulting in poorer
performance.Fig. 3 Assignment of the vibrational mode of the Raman marker band

used for ordinary least squares analysis. The atomic displacement
vectors of the Raman band of levofloxacin at 1400 cm−1 are shown and
can be assigned to a combination of CH2-wagging of the piperazine
system and CH-bending vibration of the quinolone ring. The color code
for the individual atoms is: hydrogen, white; carbon, grey; oxygen, red;
nitrogen, blue; and fluorine, cyan.

Table 1 Evaluation of the different models for preprocessing and pre-
diction. The RMSEP for the baseline and EMSC correction and their
combination were calculated using the simulated (csim,int and csim,o) and
predicted (cpred,int and cpred,o) sample concentrations for both pharma-
cokinetics. The OLS regression shows overall poorer performance than
the PLS regression, and the concentrations of the intravenous model are
better predicted than those of the oral ones. In addition, the concen-
trations of the EMSC-corrected data show higher similarities to the
simulated ones, but the baseline correction has a greater impact on the
calibration and prediction results since the combined data treatment
differs only slightly from the baseline correction

Pre-processing method

Baseline
correction

EMSC
correction Combination

OLS
regression

RMSEP (iv)/µM 3.20 1.96 3.11
RMSEP (o)/µM 4.10 2.29 4.04
LoD/µM (mg L−1) 8.78 (3.49) 5.54 (2.20) 8.70 (3.46)

PLS
regression

RMSEP (iv)/µM 1.95 1.27 1.69
RMSEP (o)/µM 2.71 1.66 2.01
LoD/µM (mg L−1) 6.39 (2.54) 4.50 (1.79) 5.01 (1.99)

Fig. 4 Concentration profile after the intravenous (A) and oral (B)
administration of 750 mg levofloxacin. Simulated concentrations (csim,int

and csim,o, orange solid line) were compared with their predicted values
(cpred,int and cpred,o) using either OLS (1) or PLS (2) regression. First-order
(A) or Batman kinetics (B) were fitted (black solid line). Concentrations
below the limit of detection (dashed horizontal line) were not satisfac-
torily determined. Therefore, the resulting concentrations are too high
for both models, but the PLS regression shows better overall agreement
with the simulated data.
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Various kinetic parameters can be derived from the time-
dependent concentration profile resulting from a pharmacoki-
netic study. Two different kinetic models were simulated (vide
supra). Intravenous treatment can be expressed as linear
absorption and first-order elimination

½E� ¼ ½E�0 � expð�ke � tÞ;
where [E] and [E]0 are the concentrations of the educts at any
time point t and at the starting point t0, respectively, and ke is
the kinetic time constant of the elimination. Oral adminis-
tration follows Bateman kinetics,74 in which the absorption,
resorption, and elimination of the antibiotics take place:

P½ � ¼ F � ka
ka � ke

� exp �ke � tð Þ � exp �ka � tð Þ½ �:

Here, [P] is the product concentration at any time point t,

F ¼ f � D
V

is a factor representing the relationship between the

bioavailability f, dose D, and volume of distribution V, and ka
and ke are the kinetic time constants for absorption and elim-
ination, respectively.

As an additional indicator of the quality of the algorithm
used, these pharmacokinetic models were fitted to the pre-
dicted concentration profiles and their results were compared
with the simulated values (see Fig. 4 and Table 2). Here, the
PLS regression yields a near-perfect agreement for the intrave-
nous model and provides values of the same order of magni-
tude for the oral administration model. For the latter, the OLS
model is slightly better than the PLS model but has higher
errors. Thus, the experiments performed demonstrate the
potential of resonance Raman spectroscopy in combination
with PLS regression as a promising method providing reliable
results for TDM.

Conclusion

In this work, the potential of deep UV resonance Raman spec-
troscopy in combination with PLS regression could be shown
for two different administration forms of the antibiotic levo-
floxacin. The stable regression model enables good agreement

of important kinetic parameters with the simulated data.
These additionally provide important information on pharma-
cokinetics, which can further be used for better antibiotic
dose adjustment. For the antibiotic quantification with deep
UV resonance Raman spectroscopy, only a small sample
volume (200 µL) and a short integration time (7.5 s) were
required for sufficient results.

The measurements carried out in this study can be applied
to body fluids, such as blood plasma, without significant
modifications. Using a precisely selected wavelength in the
DUV range, no fluorescence appears in the Raman spectrum
and the analyte signals are resonantly enhanced. The complex
composition of body fluids will result in several signals in the
Raman spectrum, which may cause poorer results with OLS
regression since the antibiotic marker band could be overlaid
by the signals of the body fluid. However, the PLS regression
could be applied to quantify antibiotic levels in body fluids
comparatively well, as a larger spectral range is utilized in com-
parison with the OLS regression.

In summary, the UV resonance Raman experiments per-
formed show high potential for the quantification of the levo-
floxacin pharmacokinetics and provide the foundation for
future TDM studies.
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