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While infrared microscopy provides molecular information at spatial resolution in a label-free manner,

exploiting both spatial and molecular information for classifying the disease status of tissue samples con-

stitutes a major challenge. One strategy to mitigate this problem is to embed high-dimensional pixel

spectra in lower dimensions, aiming to preserve molecular information in a more compact manner, which

reduces the amount of data and promises to make subsequent disease classification more accessible for

machine learning procedures. In this study, we compare several dimensionality reduction approaches and

their effect on identifying cancer in the context of a colon carcinoma study. We observe surprisingly small

differences between convolutional neural networks trained on dimensionality reduced spectra compared

to utilizing full spectra, indicating a clear tendency of the convolutional networks to focus on spatial

rather than spectral information for classifying disease status.

1. Introduction

Combining infrared microscopy with machine learning has
become an established approach in biomedical research. This
approach yields high-dimensional infrared spectra at spatial
resolution. Utilizing these complex data for disease classifi-
cation and other biomedical applications is generally challen-
ging. One approach to make classification more accessible is
to computationally reduce the dimensionality of infrared
spectra to few representative components. In this comparative
study, we systematically investigate how different approaches
towards reducing the dimensionality of infrared pixel spectra
affect machine learning performance.

Infrared microscopy is a well-established tool in biomedical
research due to its label-free and non-destructive character-
istics.1 Many studies have shown its analytical potential, par-

ticularly in cancer research using either Fourier transform
infrared (FTIR) microscopy2,3 or, more recently, much faster
quantum cascade laser (QCL) based infrared microscopy.4,5 In
an infrared microscopic image, the absorbance spectra at each
pixel position represent fingerprints of the biochemical com-
position. As has been demonstrated in numerous studies,3,6–8

the highly resolved molecular information can be utilised to
precisely localize different tissue components,3 recognize
tumor,5 or distinguish different tumor subtypes6,8 with high
sensitivity and specificity.

From the perspective of data analysis, infrared spectra are
high-dimensional, and reducing their dimensionality without
losing relevant information is important for several reasons, in
particular in the context of infrared microscopy. A first reason
is of practical nature: infrared microscopic images often
capture large areas of cell or tissue samples, resulting in large
datasets that require significant resources in terms of storage
and high-performance computing. Reducing the dimensional-
ity clearly promises to reduce the computational resource foot-
print for infrared microscopy based diagnostic studies.

Besides such practical resource considerations, dimension-
ality reduction is also relevant from a more theoretical perspec-
tive. In cell or tissue samples, molecular absorptions result
from a heterogeneous mixture of a large number of different
molecules. The molecular absorptions are further understood
to be intertwined with Mie scattering caused by infrared wave-
length-sized particles such as nuclei.9,10 Consequently, it
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makes sense to consider discriminative spectral differences
between tissue components as being due to integral phenoty-
pic changes. Dimensionality reduction can potentially identify
a small number of abstract phenotypes that may reflect mole-
cular or cellular mechanisms involved in certain tissue com-
ponents or certain stages of a disease. In this sense, dimen-
sionality reduction could support the biological interpretation
of infrared spectra.

Since the physical processes that model the composition of
infrared spectra in tissue samples are highly non-linear,9 it is
difficult to identify a dimensionality reduction method whose
mathematical assumptions decompose tissue spectra into phys-
ically meaningful components. This difficulty motivates our
comparative computational study in the present manuscript: we
assess how different dimensionality reduction methods disen-
tangle spectra into a limited number of components by measur-
ing how the reduction affects subsequent classification. Since
recent progress in computational pathology has been boosted
significantly by deep convolutional neural networks, both for
infrared imaging5,11,12 and conventional histopathology
imagery,13 we focus on studying the effect of dimensionality
reduction on such deep neural networks.

The remaining parts of the manuscript are structured as
follows: we first provide a brief overview of dimensionality
reduction approaches that are currently relevant for infrared
microscopy. We then describe a QCL-based dataset of colon
tissue samples used in a recent study5 in the context of tumor
identification of colon carcinoma and describe in more detail
five dimensionality reduction methods that we investigate. We
then systematically compare how the five reduction
approaches affect the performance of a specific weakly super-
vised deep learning method5 that localizes tumor. Our investi-
gation aims to provide guidance for the use of dimensionality
reduction in future studies, which we further support by
making implementations available.

1.1. Dimensionality reduction approaches for infrared
microscopy

Dimensionality reduction is commonly used in infrared
microscopy for reducing computational resource demand and
for disentangling biochemically relevant components of pixel
spectra. Correspondingly, it has been discussed extensively in
the context of preprocessing infrared pixel spectra.14 An
elementary dimensionality reduction approach is to perform
feature selection, i.e., to reduce the pixel spectra to only a few
putatively relevant wavenumbers. In the early days of the
field,15 handcrafted spectral features from wavenumbers
selected based on prior knowledge. A major limiting factor for
such knowledge-based approaches may be the complex compo-
sition of infrared microscopic pixel spectra, which has led to
the investigation of data-centric approaches that infer relevant
wavenumbers using statistical16 or information theoretic17

measures of significance to identify relevant wavenumbers.
Whether based on prior knowledge or data-centric

measures of significance, selecting individual wavenumbers
for dimensionality reduction does not match the physical com-

position of wavenumbers. A more realistic, although still crudely
oversimplified, assumption is to consider infrared spectra as
linear combinations of base spectra associated with basic mole-
cular or cellular constituents. This perspective leads straight to
principal component analysis (PCA) and related factorization
based dimensionality reduction approaches. Correspondingly,
PCA has been utilized extensively in numerous studies.18–20

Also, methodologically related factorization approaches such as
maximum noise fraction21 or vertex component analysis have
been employed to reduce pixel spectra dimensionality. Such fac-
torization approaches are indeed appealing for infrared spec-
troscopy since they make more explicit assumptions such as
non-negativity of factors and noise characteristics.

It can be regarded as well-understood that the linearity
assumptions underlying factorization based approaches do
not match the involvement of non-linear processes9 in the
composition of infrared spectra. This motivates the investi-
gation of non-linear dimensionality reduction approaches
such as local linear embedding,22,23 isomap24 and uniform
manifold approximation and projection25 (UMAP). In ref. 26,
UMAP was performed to reduce the dimensionality of spectral
data in the context of neurodegenerative diseases classifi-
cation. Autoencoders (AEs) constitute a neural network based
class of dimensionality reduction approaches which have been
investigated in the context of infrared spectroscopy based
cancer classification27,28 as well as for noise reduction.29

2. Materials and methods
2.1. Sample preparation

Our study is based on a previously described cohort of 200
samples5 from the multicenter registry study ColoPredict Plus
(CPP) 2.0 (registration number 4453-12, 20-6830 and 17-6151,
Ethics Commission, Faculty of Medicine, Ruhr-University
Bochum), which we briefly describe for the sake of complete-
ness. The CPP 2.0 study collects samples retrospectively and
prospectively in different clinical centers in Germany. The
cohort includes 100 tumor-free tissue sections and 100
samples with colorectal carcinoma (UICC-Stage II and III,
older than 18 years). Tissue samples were collected during
surgery, formalin-fixated, followed by a paraffin-embedding,
and handled according to standardized protocols used at the
Institute of Pathology, Ruhr-Universität Bochum, Germany.
Subsequently, the tissue blocks were cut into 7 μm thin tissue
sections, placed onto Leica PET frame slides, and dewaxed
before spectral data acquisition.

2.2. Spectral data acquisition

Infrared imaging was performed using three Spero QT QCL-
based microscopes which we refer to as Spero1–3 and the
Chemical Vision software (Daylight Solutions, CA, USA) follow-
ing an established setup (Kuepper et al., 2018).4 The standard
microscope is equipped with a 4× magnification 0.3 NA objec-
tive, covering a 2 × 2 mm2 field of view (FOV). Spectra were
obtained in the range of 1800 to 948 cm−1 with a spectral
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resolution of 2 cm−1 so that each pixel is represented by a
427-dimensional vector. Collection of chemical images is
achieved with an uncooled focal plane array (FPA) detector,
consisting of 480 × 480 pixels resulting in a pixel size of 4.25 ×
4.25 μm for the given FOV. Following the spectral acquisition,
the samples were stained by H&E according to the standard
procedures in pathology.

2.3. Datasets

The dataset of 200 samples was divided into a 50% training,
25% validation, and 25% testing ratio, with an equal distri-
bution of tumor and tumor-free patients (Table 1). Training
and validation sets were utilized in the training process while
the test group was subsequently used for an independent
evaluation. All groups were strictly separated at patient level,
thus measurements of the same patient can only be found in
one group. The partitioning of samples was kept constant
throughout all experiments. For every sample, rectangular
regions of interest (RoIs) of varying sizes were manually pre-
defined to ensure a variety of tissue components in tumor-free
samples and for tumor samples, at least 20% of cancerous
tissue had to be present. Every RoI is labeled at patch-level,
assigning each RoI as class label 1 if it contains tumor-related
tissue and 0 otherwise. A binary mask for every RoI is avail-
able, in which tissue pixels are set to 1 and background pixels
to 0.

For all dimensionality reduction approaches, an additional
subset of the whole dataset was used. The subset includes a
randomized selection of samples from each group following
the previous partitioning. It comprises 43 samples (21 tumor,
22 tumor-free) from the training data and 21 validation
samples (10 tumor, 11 tumor-free). To further reduce the
number of spectra, only 10% of spectra were randomly selected
from each RoI. The training data involves a total of
1.68 million spectra and validation was conducted on
0.9 million spectra.

2.4. Dimensionality reduction

Each hyperspectral infrared image comprises infrared spectra
where each pixel is represented as a spectrum with d = 427

wavenumbers. The dimensionality of the data was reduced to d
= 16 to lower the computational complexity while retaining the
most significant information in the data. The choice of redu-
cing the dimensionality to 16 was determined by calculations
of CompSegNet using encoded data of varying dimensions,
specifically d = 4, 9 and 32 (ESI Table 1†). Reducing the dataset
to 4 dimensions proved too limited, resulting in significant
loss of information and poorer metric values. Conversely, redu-
cing it to 32 dimensions did not provide substantial improve-
ments compared to 9 dimensions (ESI Fig. 1†). Therefore, the
selection of 16 dimensions strikes a balance between compu-
tational time and the risk of overfitting, ensuring the model’s
ability to generalize well to unseen data while keeping calcu-
lations within a day’s time. For dimensionality reduction, we
investigated five unsupervised methods, namely principal
component analysis, uniform manifold approximation and
projection, two different types of stacked autoencoders, and
the selection of random wavenumbers as baseline (Fig. 1).

Principal component analysis. PCA is certainly the most
widely used dimensionality reduction technique for analyzing
multivariate datasets.30 PCA iteratively decomposes the covari-
ance matrix of the pixel spectra into a sequence of mutually
orthogonal principal components (PCs) of decreasing
variance.31,32 In our study, the spectra were standardized to
remove the possible influence of individual pixels with large
variance on the PCs, such that its distribution has a mean
value of 0 and a standard deviation of 1.

Uniform manifold approximation and projection. As a
second dimensionality reduction approach, we investigated
UMAP,25,33,34 which combines ideas from algebraic topology to
embed the data points in a space with high dimensionality n
in a graph with spectral graph theory, specifically the graph
Laplacian, to perform dimensionality reduction to a space
with lower dimensionality d. The graph embedding involves
so-called simplicial sets, a concept related to simplicial com-
plexes, which UMAP computes locally around each data point
based on a k-nearest-neighbor search. By considering vertices
as fuzzy, i.e., weighted simplicial sets, this process yields a
certain pseudo-metric space which can be represented by a
graph adjacency matrix. The eigenvectors with the d largest

Table 1 Characteristics of the ColoPredict Plus 2.0 multicenter dataset. The total number of samples, measurements, region of interest, and
spectra used for training, validation, and testing is provided. A subset of the main dataset was used for dimensionality reduction

Training cohort Validation cohort Test cohort

TotalTumor Tumor-free Tumor Tumor-free Tumor Tumor-free

Samples (n) 50 50 25 25 25 25 200
Measurements (n) 133 104 72 52 57 58 476
Spero1 (n) 100 53 58 27 46 28 312
Spero2 (n) 30 51 11 25 10 30 157
Spero3 (n) 3 0 3 0 1 0 7

RoI (n) 632 635 312 315 236 359 2489

Subset
Samples (n) 21 22 10 11 10 10 84
Spectra (n) 949 183 736 950 592 188 346 561 435 349 468 090 3 528 321
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eigenvalues of the Laplacian of the adjacency matrix finally
yield a dimensionality reduction. The obtained embedding is
further optimized with a defined cross-entropy which mini-
mizes the differences between both topological represen-
tations. As a result, UMAP yields an embedding mapping
through which arbitrary data points can be projected from n
dimensional space to d-dimensional space.

In the optimization process, the local distances of the
embedded data points to be preserved can be adjusted by a
minimum distance parameter.25 For our UMAP approach, all
combinations of a set of minimum distances min_dist = 0.01,
0.1, 0.5, 1, a set of k-neighbours for each data point n_neigh-
bors = 5, 15, 50, 100 and eight metrics to compute the distance

between points metric = {braycurtis, canberra, chebyshev, cor-
relation, cosine, euclidean, manhattan, minkowski} were
tested on a standardized test dataset, consisting of 100 healthy
and 100 cancerous pixel spectra. The data was embedded into
a Euclidean space (n_componetns = 2) for visualization. All
metrics showed similar results under identical parameters.
The default parameters for minimum distance and number of
neighbors worked best for the majority of metrics, so for our
dimensionality reduction study, we choose min_dist = 0.01,
n_neighbors = 15, metric = correlation and a dimensional
space of n_components = 16.

Stacked autoencoders. AEs are a neural network based
approach to dimensionality reduction by learning a low-

Fig. 1 Schematic overview of the general workflow. a: Colon samples were measured with a quantum cascade laser and subsequently H&E stained.
After getting expert annotations, regions of interest for control and cancer samples of varying sizes are defined. On only a subset, dimensionality
reduction was performed with principal component analysis, uniform manifold approximation and projection, two autoencoders, and random pro-
jection in which random wavenumbers were chosen. To evaluate the encodings, a segmentation task was conducted using CompSegNet, yielding a
cancer segmentation map. b: Each pixel in an infrared image is represented by a 427-dimensional vector and is embedded into a 16-dimensional
space. c: Two contractive autoencoders were tested for dimensionality reduction: a series of stacked contractive autoencoder with a single hidden
layer were trained36 and afterwards connected to form a deep autoencoder (SCAE, lower). In the second approach, all hidden layers were jointly
trained, yielding a fully-connected contractive autoencoder (FCCAE, upper).
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dimensional representation of the input data in an unsuper-
vised manner. In its most basic form, an AE is composed of an
input x, an output x′, and a hidden layer h. The network learns
a representation of the input h = f (x) and tries to reconstruct
the original data point from the latent space r = g(h) to mini-
mize a cost function kg( f (x)) − xk. The aim of the AE is to
learn an approximate version of the initial dataset, so that the
network learns a lower dimensional representation of the
data.35 It has been shown11,36 that regularization by the
Frobenius norm of the Jacobian matrix as a penalty function
creates robustness against small perturbations around the
data by keeping the derivatives small. Such a contractive auto-
encoder (CAE) yields a reconstruction error of L(x,g( f (x))) +
λkJf(x)kF2. Here, two different variants of CAEs were
implemented and assessed (Fig. 1c): in the first approach, we
followed the idea of Rifai et al. and constructed a series of
stacked contractive autoencoders (SCAE, Fig. 1c, lower) which
are trained with one hidden layer each and are afterwards con-
nected to form a deep autoencoder. In the second approach,
the entire AE is trained from scratch, yielding a fully connected
contractive autoencoder (FCCAE, Fig. 1c, upper). Both AEs
have hidden layers with identical decreasing size H = (256,
128, 64, 32, 16), are initialized following Glorot et al.,37 and
were trained for 2000 epochs with a mean squared error with
the contractive regularization term.

Random projection. In a fifth dimensionality reduction
approach, we randomly choose 16 among the 427 wavenum-
bers in the range of 1800 to 948 cm−1. This random choice can
be regarded as a baseline reference. The random choice led to
the wavenumbers WNrandom = {966, 1042, 1088, 1122, 1124,
1182, 1292, 1332, 1338, 1370, 1432, 1450, 1502, 1532, 1594,
1666}.

Stochastic neighborhood embedding for 2D visualization.
For the purpose of two-dimensional visualization, we also
employed t-distributed stochastic neighbor embeddings
(t-SNE) as a non-linear dimensional reduction technique that
uses joint probabilities as a distance metric in the high and
low dimensional space and minimizes the Kullback-Leibler
divergence between them with respect to the data points’
location.38 The approach behind t-SNE is similar to the final
optimization stepin UMAP. However, t-SNE does not yield an
embedding mapping, so that it is not possible to include it as
a dimensionality reduction approach in our comparative com-
putational survey.

2.5. Cancer segmentation with CompSegNet

To evaluate the encoded datasets created by our dimensional-
ity approaches, a cancer segmentation task was subsequently
performed. A Comparative Segmentation Network
(CompSegNet)5 was trained for each of the five dimensionality
reduction methods. The network was trained on the full colon
dataset described in section 2.3. The CompSegNet is a weakly
supervised method using coarse-grained labels on patch-level
only to overcome the bottleneck of requiring pixel-precise seg-
mentations for localizing tumor or other relevant tissue com-
ponents. The topology of CompSegNet comprises an extended

U-Net39 architecture, whose input layer we adapted to the
16-dimensional input image features at each pixel. The output
layer of the U-Net yields an activation map of equal spatial
dimensions as the input data and is connected to a pooling
neuron p. The activation of each neuron is bounded by a
sigmoid function between 0 and 1 and is averaged in p, using
the corresponding binary mask for each sample. The pooled
activation is weighted by the relative amount of foreground
pixels in each mask, giving a percentage of tumor present. The
activation for control samples should be minimized while the
activation for tumor samples should lie between a lower
bound α and an upper bound α + β, to counteract overdetec-
tion of cancer.

A total of 12 CompSegNet models for each approach were
trained to allow for hyperparameter optimization and to find
the combination of parameters yielding the highest metric
values. Building on previous work,5 cancer patches were
assumed to contain between 20% (α = 0.2) and 90% (α + β =
0.9) tumor, which was optimized among all combinations of α
∈ 0.05, 0.1 and α + β ∈ 0.8, 0.85, 0.9. We used a set of initial
learning rates (5 × 10−4, 1 × 10−4) along with a learning rate
scheduler (decay = 0.9 every 10 or 30 epochs) and a batch size
of 4. RMSprop was the optimizer of choice with a momentum
of 0. The models were trained for 400 epochs but were termi-
nated earlier if overfitting occurred.

2.6. Model selection and binarization of activation maps

After training, each epoch is evaluated on validation data with
a classification approach. The relative amount of activation in
each RoI is calculated by taking the overall sum of activation
and divide it by the sum of tissue pixels. If the resulting value
lays between α and α + β, the RoI is labeled as 1 (cancer), 0
otherwise. The model yielding the highest F1 score of each
approach is chosen.

In the next step, activation maps have to be binarized to be
comparable to groundtruth annotation. Therefore, we make
use of two different thresholds θ and ρ, similar to
Schuhmacher et al., 2022.5 The first threshold θ actually
binarizes the image while the second threshold acts as a
tumor-fraction threshold with an upper bound. The combi-
nation of both thresholds will classify a RoI as cancerous if the
ratio of tumor pixels exceed ρ but is still below 90% of existing
tissue pixels after binarization using θ. We systematically com-
puted all possible combinations with a step size of 0.01 for θ

and 0.02 for ρ to maximize F1 scores.

2.7. Implementation

All calculations were conducted on either of two different hard-
ware constellations. First, a server (HPC) with an Intel(R) Xeon
(R) Platinum 8176 CPU Processor with 56 CPU threads and 1.5
TB of RAM and an Nvidia Tesla V100 PCIe with 16 GB memory
size; and second, a server (DL) an Intel(R) Xeon(R) Gold 6148
CPU Processor with 44 CPU threads with 385 GB of RAM with
an Nvidia Tesla V100 SXM2 with 32 GB memory size. All com-
putations on the HPC were implemented in Python (version
3.7.10), using the libraries sklearn (version 0.23.1), umap
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(version 0.5.1), tensorflow-gpu (version 2.1.0), and numpy
(version 1.20.2). Computations on the DL server were com-
puted using python (version 3.7.3), sklearn (version 0.23.1),
tensorflow-gpu (version 2.2.0), and numpy (version 1.18.5).

3. Results
3.1. Encoding comparison using t-SNE

Four of the five dimensionality reduction approaches require
unsupervised pre-training, which was conducted on the subset
comprising 1.77 million spectra. Computing principal com-
ponents (PC) and the subsequent projection took less than
10 minutes (Table 2), while UMAP required 1.5 hours. Training
of the fully connected AE took around 1.5 days, and training
the stacked AE required more than seven days. No training was
required in the Random approach, in which the dimensions of
the dataset were reduced to 16 randomly selected wavenum-
bers. All encoding approaches were compared to a neural
network using full spectra (Schuhmacher et al., 2022).5

In order to visualize and compare the latent space represen-
tations and decompositions, the t-SNE algorithm was applied
to one test sample to further reduce the dimensions to
Euclidean space. The chosen sample comprises different
tissue types, including areas of cancer (1, red), crypts (2,
green), lymphocytes (3, blue), muscle (4, cyan), and connective
tissue (5, purple). A background area not covered with tissue is
labeled as class 0 (black) and was also included (Fig. 2a). For
classes 1–5, an area of 100 × 100 pixels is defined as the repre-
sentative of each tissue class, with the exception of lympho-
cytes (blue rectangle), due to the limited amount of lympho-
cytes in the tissue. If background pixels were present in other
classes, they were masked and left out in further analysis. In
the next step, the spectral cut-outs of each class were com-
bined and their embeddings were calculated by our 5 proposed
techniques. To compare if each dimensionality reduction
approach captures local data structures while preserving the
global ones as well, t-SNE (perplexity = 10, 30, ESI Fig. 2 and
3†) was conducted on low-dimensional data while we also
examined the ability of t-SNE to separate the tissue classes
given the full spectral range (Fig. 2b, top row). Here, we focus
on t-SNE embeddings of SCAE and random projection in com-
parison to embeddings given the full spectral range. The

embeddings of all tissue classes are illustrated in a combined
scatter plot for each method. No clear separation of clusters
can be found in the combined scatter plots regardless of
different perplexity values (ESI Fig. 2 and 3†) although all
methods were able to separate the background pixels from the
other data points, except UMAP. The only embedding method
that forms more compact clusters and allows for a more visual
separation is the SCAE. Here, clusters overlap in more sparse
areas while the dense pixel clouds are located towards the
edges of the plot: the main pixels of the tumor class are
located in the middle of the plot, the crypts and connective
tissue are in the upper left and right corner, the background
and lymphocytes are to the left and right of the main cancer
pixels and the muscle class is below. While such trends may
be due to distortions in the two dimensional t-SNE projec-
tions, they are consistently observed under varying perplexity
values for t-SNE embeddings.

3.2. Computation time

As a next step, a cancer segmentation task is performed on the
complete dataset. Therefore, a total of 1267 training and 627
validation data points (i.e., image patches) have to be
embedded within each reduction approach. The loading time
for full spectra takes approximately two hours (Table 2).
Adding the embedding step, the overall loading and preproces-
sing time is extended by only 3 hours for PCA, FCCAE and
SCAE. However, embedding with UMAP took around 3 weeks
and the dataset was saved as an intermediate step. Reducing
the wavenumbers of each dataset to 16 random numbers takes
less than a second and can be neglected.

Training the CompSegNet on full spectra for 400 epochs
takes around one week, which is reduced to a training time of
roughly one day on the dimensionality-reduced images. Thus,
the overall training time could be decreased by 85%.

3.3. Deep learning classification performance

As described in section 2.6, the RoIs of the validation cohort
that maximizes the F1 score were binarized, and a threshold
on the number of tumor pixels classifies the sample as cancer
or cancer-free, so that accuracy, sensitivity and specificity
could be computed as performance measures. The results
shown in Table 2 surprisingly indicate that classification on
random wavenumbers yields sensitivity, accuracy and F1 score

Table 2 Time of dimensionality reduction process and calculation of encodings in hours and classification results of CompSegNet in percent. No
training is required to reduce the number of wavenumbers in the Random approach and by using the full spectral range

t train dim. red.
model on subset
(h)

t load data (train/val)
+ encode data (h)

t train
model (h)

Validation data Testing data

Sens.
(%)

Spec.
(%)

Acc.
(%)

F1
(%)

Sens.
(%)

Spec.
(%)

Acc.
(%)

F1
(%)

PCA ∼0.1 ∼5 ∼24 96.12 97.78 96.00 96.90 91.34 97.21 94.92 93.39
UMAP ∼1.5 ∼500 ∼24 92.23 96.51 94.39 94.21 93.53 94.43 94.08 92.54
FCCAE ∼36 ∼5 ∼24 95.79 97.78 96.79 96.73 96.55 95.54 95.94 94.92
SCAE ∼180 ∼5 ∼24 93.85 99.05 96.47 96.35 93.10 98.61 96.45 95.36
Random — ∼2 ∼24 99.35 97.46 98.40 98.40 97.41 94.25 95.43 94.36
Full spectra — ∼2 ∼168 94.94 99.69 97.33 97.24 95.40 97.77 96.82 96.00
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of 99.35%, 98.40% and 98.40%, respectively, exceeding the
performance of any of the four non-trivial dimensionality
reduction methods. The specificity score is one of the lowest
(97.46%). The highest specificity of 99.69% was obtained
using the full spectral range.

For measuring performance on the independent test data,
we used the same thresholds as for the validation data. The
highest sensitivity score (97.41%) was likewise obtained by the
random approach, while the highest specificity was obtained
by the SCAE. The best accuracy and F1 scores were achieved by
training on full spectra.

3.4. Cancer segmentation results

To evaluate cancer segmentations, the trained CompSegNet
models were applied to a set of three whole-slide images from

the test set using a sliding window of 256 × 256 with an offset
of 64 pixels to obtain tumor segmentations. In overlapping
areas of the sliding CompSegNet windows, the maximum acti-
vation was assigned to each pixel. Activation maps were binar-
ized subsequently compared to groundtruth annotations taken
from previous work.5 We used F1 scores to measure the per-
formance of each cancer segmentation (Fig. 3, color: lime).
Segmentations were further divided into true-positive pixels
(yellow), false-positive areas (green) and false-negative ones
(purple). The F1 scores of all five methods indicate a good
agreement between annotation and tumor associated areas,
where random projection yields the highest score exceeding
81%. Remarkably, no major differences can be noticed when
comparing segmentations on any of the five dimensionality
reduction methods to the segmentation obtained using full

Fig. 2 Comparison of encodings with t-SNE in Euclidean space. a: Spectral data of 6 different (tissue) classes (0, background, black; 1, cancer, red;
2, crypts, green; 3, lymphocytes, blue; 4, muscle, cyan; 5, connective tissue) from a test patient have been encoded with SCAE and random projec-
tion into 16 dimensions and were afterwards embedded into an Euclidean space with t-SNE. t-SNE was also conducted on full spectra for compari-
son. b: Results of t-SNE embeddings: each approach includes a main t-SNE plot showcasing the embeddings of all six classes. Additionally, a separ-
ate t-SNE plot is dedicated to classes 2, 3, 4, and 5, allowing a focused examination of these specific classes within the dataset.
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Fig. 3 Comparison of whole-slide cancer segmentation on infrared samples and embeddings. Segmentations of 3 different samples of the inde-
pendent test cohort of the ColoPredict Plus 2.0 registry study. Black: background of sample with no tissue. Grey: annotation of cancer-free tissue.
Light grey: annotation of cancer tissue. Purple: cancer-associated tissue that is not detected by the neural network (false-negative). Yellow: segmen-
tation output of cancerous pixels (true-positive). Green: segmentation output of hypothetical cancerous pixels (false-positive). Lime: segmentation
output (green + yellow). Annotations were performed on H&E slides by a pathologist.
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spectra. Only segmentations based on UMAP embeddings
exhibit a significant amount of false positive pixels.

In order to assess how far the classifiers rely on tissue mor-
phology rather than spectral information, we created a mor-
phology-free dataset by shuffling spectra randomly within each
tile. As shown in ESI Fig. 4,† this results in a vanishing F1
score of the resulting segmentations on pixel level, while the
classification of complete RoIs remains high (ESI Table 2†).
This underlines the CompSegNet’s heavy reliance on tissue
morphology for accurate segmentations.

4. Discussion

The most striking and remarkable phenomenon we observe
are the relatively small differences in performance, not only
between the five dimensionality reduction methods, but also
compared to training on full spectra. This indicates that, at
least in the tumor localization task under our investigation,
the convolutional neural network makes only limited use of
spectral information for classification, which is underlined by
the vanishing F1 score in a pixel permuted dataset. This is
further supported by the unexpectedly strong performance of
random projection. The neural networks not exploiting spec-
tral information clearly suggests that classifications of infra-
red microscopic images by convolutional neural networks can
utilize morphological or other spatial information. Two
aspects remain open: first, it is unclear what is the physical
origin of the spatial information, which could be due to mor-
phological patterns of molecular vibrations, or result from
(resonant) Mie scattering of cells or subcellular particles.40

While it is interesting that spatial information contained in
infrared microscopic images is useful for classifying disease
status, it is also dissatisfying. It suggests that the strong
improvements in terms of accuracy and model generalization
seen in recent infrared-microscopy based tissue diagnostic
studies5,41 are at least partially due to spatial information.
This clearly calls for the exploration of machine learning
models that systematically exploit spectral information, while
matching or exceeding the steep improvements in accuracy
and model generalization that convolutional neural networks
brought to the field recently.

While differences between the four non-trivial embedding
methods under investigation are small, they are far from negli-
gible. The computationally very efficient PCA appears to be
competitive with the much more resource demanding
methods, which yet must be taken with a grain of salt. Only
one out of the twelve CompSegNet models trained on PCA
embedded spectra yielded reasonable segmentations, while
the embeddings by the UMAP, FCCAE, SCAE and also random
projection were much less sensitive to CompSegNet parameter
settings. The t-SNE projections in Fig. 2 indicate that the SCAE
conserves both local and global spectral information more
strongly than any of the other methods. UMAP somewhat falls
behind, not only because of high computation times, but also
false positive tumor identification.

Dimensionality reduction clearly delivers the promise of
resource efficient training of strong disease classifiers by redu-
cing the time needed for training by almost one order of mag-
nitude, while achieving essentially identical performance com-
pared to using full spectra. This finding, however, cannot be
transferred to arbitrary settings: our results do not exclude that
in other settings, e.g. when dealing with classifying or localiz-
ing cancer subtypes,8,42,43 performance could suffer signifi-
cantly under dimensionality reduction. The same holds for
neural network topologies other than the CompSegNet investi-
gated here, which could potentially be more or less sensitive to
dimensionality reduction.

5. Conclusions

We have systematically compared how five different dimen-
sionality reduction approaches applied to infrared microscopic
pixel spectra affect subsequent disease classification by convo-
lutional neural networks. Our most striking finding is that
convolutional neural networks, at least in the setting given
here, make strong use of spatial information rather than spec-
tral information for disease classification, raising the quest for
future developments of machine learning approaches that
incorporate both levels of information. Yet, dimensionality
reduction significantly reduces the resource demand required
to train stable machine learning models, suggesting that low
dimensional embeddings are a useful tool for establishing
infrared microscopy based tissue diagnostics, at least in classi-
fication tasks where spatial context is informative for
classification.

Code and data availability

The source code to perform dimensionality reductions is avail-
able at https://github.com/RUB-Bioinf/DimensionalityReduction.
A suitable docker image can be downloaded here: https://hub.
docker.com/r/bioinfbo/dimensionality_reduction. The spectral
and medical data that support the findings of this study are avail-
able from the corresponding author AM upon reasonable
request.
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