Issue 3, 2023

Classical thiazole orange and its regioisomer as fluorogenic probes for nucleolar RNA imaging in living cells

Abstract

In contrast to well-established DNA-selective dyes for live cell imaging, RNA-selective dyes have been less developed owing to the challenges of making small molecules have RNA selectivity over DNA. Two kinds of dyes are now commercially available for nucleolar RNA imaging in cells, but these two dyes do not apply to living cells and have limited use in fixed and permeabilized cells. Herein, we report on thiazole orange (TO), a well-known nucleic acid stain, as a promising fluorogenic dye for nucleolar RNA imaging in living cells. TO shows clear response selectivity for RNA over DNA with a significant light-up property upon binding to RNA (λem = 532 nm, I/I0 = 580-fold, and Φbound/Φfree = 380) and is even applicable to wash-free imaging of living cells. More interestingly, 2TO, a regioisomer of TO in which the benzothiazole unit is connected to position 2 in the quinoline ring, performs much better (λem = 532 nm, I/I0 = 430-fold, Φbound/Φfree = 1200), having superior selectivity for RNA in both solution and living cells. The comparison with TO derivatives carrying different substituents at N1 of the quinoline ring reveals that the slight change in the TO framework significantly affects RNA selectivity, photostability and membrane permeability.

Graphical abstract: Classical thiazole orange and its regioisomer as fluorogenic probes for nucleolar RNA imaging in living cells

Supplementary files

Article information

Article type
Paper
Submitted
02 Nov 2022
Accepted
21 Dec 2022
First published
21 Dec 2022

Analyst, 2023,148, 636-642

Classical thiazole orange and its regioisomer as fluorogenic probes for nucleolar RNA imaging in living cells

M. He, Y. Sato and S. Nishizawa, Analyst, 2023, 148, 636 DOI: 10.1039/D2AN01804G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements