Issue 30, 2022

A smart hydrogel patch with high transparency, adhesiveness and hemostasis for all-round treatment and glucose monitoring of diabetic foot ulcers

Abstract

The treatment and management of diabetic foot ulcers (DFUs) is a pretty intractable problem for clinical nursing. Urgently, the “Black Box” status of the healing process prevents surgeons from providing timely analysis for more effective diagnosis and therapy of the wound. Herein, we designed a transparent monitoring system to treat and manage the DFUs with blood oozing and hard-healing, which resolved the problem of blind management for the other conductive patches. This system was prepared from a conductive hydrogel patch with ultra-high transparence (up to 93.6%), adhesiveness and hemostasis, which is engineered by assembling in situ formed poly(tannic acid) (PTA)-doped polypyrrole (PPy) nanofibrils in the poly(acrylamide-acrylated adenine) (P(AM-Aa)) polymer networks. Significantly, the high transparent conductive hydrogel patch can monitor the wound-healing status visually and effectively promote the healing of DFUs by accelerating hemostasis, improving communication between cells, preventing wound infection, facilitating collagen deposition, and promoting angiogenesis. In addition, the versatile hydrogel patch could realize indirect blood glucose monitoring by detecting the glucose levels on wounds, and further sense the movements with different magnitudes of human body timely. This research may provide a novel strategy in the design of chronic wound dressings for monitoring and treating the wounds synergistically.

Graphical abstract: A smart hydrogel patch with high transparency, adhesiveness and hemostasis for all-round treatment and glucose monitoring of diabetic foot ulcers

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2022
Accepted
13 Jul 2022
First published
14 Jul 2022

J. Mater. Chem. B, 2022,10, 5804-5817

A smart hydrogel patch with high transparency, adhesiveness and hemostasis for all-round treatment and glucose monitoring of diabetic foot ulcers

H. Liu, Z. Li, S. Che, Y. Feng, L. Guan, X. Yang, Y. Zhao, J. Wang, A. V. Zvyagin, B. Yang and Q. Lin, J. Mater. Chem. B, 2022, 10, 5804 DOI: 10.1039/D2TB01048H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements