Issue 20, 2022

Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells

Abstract

The defects at the interface and grain boundaries of perovskite films downgrade the performance of perovskite solar cells (PSCs) dramatically. Hence, improving perovskite film quality is essential for the achievement of high-performance solar cells. Herein, three new dicyclopentadithienothiophene (DCDTT)-based non-fullerene acceptors (NFAs) IN-DCDTT (1), INCl-DCDTT (2), and INBr-DCDTT (3) are developed as a promising platform for organic–inorganic hybrid perovskite solar cells to achieve simple preparation, high efficiency, and good stability. SEM and XRD data indicate that, with the addition of chlorinated NFA 2 in the active layer preparation, perovskite hybrid films exhibit larger grain sizes and higher crystallinity than pristine perovskite films. As shown by EDS and IR, all the non-fullerene acceptors (compounds 1–3) with functional carbonyl (C[double bond, length as m-dash]O) and cyano (C[triple bond, length as m-dash]N) groups have good interaction with undercoordinated Pb atoms and passivate the trap states in the perovskite films. Time-resolved photoluminescence reveals that the molecule INCl-DCDTT (2) facilitates efficient hole extraction. Consequently, solar cells based on 2−perovskite hybrid films yield an excellent power conversion efficiency of 21.39% with an FF of 0.82, a Jsc of 23.71 mA cm−2, and a Voc of 1.10 V, which represents a significant improvement as compared to a PCE of 17% obtained for the control device. Meanwhile, devices based on IN-DCDTT (1) and INBr-DCDTT (3)−perovskite hybrid films also show enhanced performance with a slightly lower PCE of 19.21% and 20.59%, respectively than cells based on 2−perovskite hybrid films. The cost-effective chlorinated INCl-DCDTT (2) and brominated INBr-DCDTT (3) organic small molecules were successfully used as donor passivation agents to improve the photovoltaic performance of Pb-based PSCs. Furthermore, compound 1–3 derived PSC devices also exhibit excellent long-term stability enhancement. In particular, a device based on INCl-DCDTT (2) treated perovskite retains ∼90% of the initial PCE after 63 days in a glove box as compared to that (55%) of the control device. This simple surface treatment, by the addition of new NFAs, provides a new strategy to simultaneously passivate surface defects and enhance charge transport at the device interface.

Graphical abstract: Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
22 Jan 2022
Accepted
14 Apr 2022
First published
18 Apr 2022

J. Mater. Chem. A, 2022,10, 11254-11267

Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells

S. N. Afraj, A. Velusamy, C. Chen, J. Ni, Y. Ezhumalai, C. Pan, K. Chen, S. Yau, C. Liu, C. Chiang, C. Wu and M. Chen, J. Mater. Chem. A, 2022, 10, 11254 DOI: 10.1039/D2TA00617K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements