
This journal is © The Royal Society of Chemistry 2022 Soft Matter, 2022, 18, 8117–8123 |  8117

Cite this: Soft Matter, 2022,

18, 8117

Thermodynamics predicts a stable microdroplet
phase in polymer–gel mixtures undergoing elastic
phase separation†

Subhadip Biswas, Biswaroop Mukherjee and Buddhapriya Chakrabarti *

We study the thermodynamics of binary mixtures with the volume fraction of the minority component less

than the amount required to form a flat interface and show that the surface tension dominated equilibrium

phase of the mixture forms a single macroscopic droplet. Elastic interactions in gel–polymer mixtures stabilize

a phase with multiple droplets. Using a mean-field free energy we compute the droplet size as a function of

the interfacial tension, Flory parameter, and elastic moduli of the gel. Our results illustrate the role of elastic

interactions in dictating the phase behavior of biopolymers undergoing liquid-liquid phase separation.

1 Introduction

Membraneless compartmentalisation in cells that are driven by
phase-separation processes due to changes in temperature or
pH, and maintained by a non-vanishing interfacial tension,
is one of the most exciting recent biological discoveries.1–4 These
membraneless compartments composed bio-molecular conden-
sates have been implicated in important biological processes such
as transcriptional regulation,5 chromosome organisation6 and in
several human pathologies e.g. Huntington’s, ALS etc.7 Self-
assembly processes that lead to organelle formation however need
to be tightly regulated such that the phase separated droplets do
not grow without bound and remain small compared to the cell
size. Understanding the regulatory processes that control droplet
size in cellular environments is therefore a crucial interdisciplin-
ary question. The two candidate mechanisms proposed for arrest-
ing droplet growth are (i) incorporation of active forces that
break detailed balance,8,9 and (ii) non-equilibrium reaction
mechanisms which couple to the local density field.4 Although
biological systems are inherently out of equilibrium, an estima-
tion of diffusion constant of bio-molecules indicates that non-
equilibrium effects are negligible on length-scales beyond
microns and timescales beyond microseconds. Hence, the frame-
work of equilibrium thermodynamics can be readily applied to
analyse biological phase separation in cells.10

For synthetic polymer mixtures, in the absence of active
processes, droplet growth is limited by the elastic interactions
of the background matrix that alters the thermodynamics of

phase separation.11–13 Recent experiments on mixtures of
liquid PDMS and fluorinated oil in a matrix of cross-linked
PDMS show the dependence of the droplet size on the nuclea-
tion temperature and the network stiffness.14,15 Despite theo-
retical attempts16,17 a complete understanding of elasticity
mediated arrested droplet growth is still lacking.

The connection between coarsening phenomena and network
elasticity is an important, and exciting area of research across
several disciplines, biological regulation of cellular function,1–4

tailoring mechanical properties of materials,18–20 controlling
morphology,21–23 size of precipitates in food products,24,25 and
even growth of methane bubbles in aquatic sediments.26–28

In this paper, we develop a consistent thermodynamic
formalism to compute the equilibrium radius of the droplet
of the minority phase in (a) binary polymer, and (b) a polymer–
gel mixture, using mean-field theories utilising the Flory–
Huggins29 and the Flory–Rehner30 free energies, respectively.
A parallel tangent construction for droplets, used to obtain the
densities of coexisting phases is presented. This procedure is a
generalisation of the common tangent construction for flat
interfaces and in the thermodynamic limit allows us to com-
pute the equilibrium radius of a single droplet. For phase
separation processes in mixtures with a gel component, elastic
interactions limit droplet growth stabilising a phase with multi-
ple droplets, in the correct parameter regime.31

2 Model

Consider a binary mixture of a gel and a solvent, close to but
below the gelation temperature, where the gel-formation and
the phase-separation are competing processes. The physical
system considered is different from the recent experimental14,15
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and theoretical studies.16,17 The experiments have been per-
formed on mixtures of liquid PDMS (uncrosslinked PDMS poly-
mers) and fluorinated oil in a matrix of cross-linked PDMS, thus it
is a ternary system. The two previous theoretical attempts16,17

however approach this by describing the thermodynamics of a
binary mixture (oil and uncrosslinked PDMS) in the background
of the elastic matrix (crosslinked PDMS), where the volume-
fraction of the matrix does not enter the calculation. The matrix
only provides an elastic background in which the phase separa-
tion of the binary mixture occurs. On the other hand, the elastic
matrix is considered in reference,14,15 but the translational
entropy of the gel has been explicitly put to zero. However, this
is a contentious issue, as we discuss later in the manuscript, and it
leads to unstable solutions for a binary mixture of a gel and a
solvent. References14,15 does not encounter this issue as they do
not perform the parallel tangent construction, which is a condi-
tion that arises from the minimisation of the free-energy, and they
bypass this by assuming that the dispersed microdroplets of the
solvents can be described as an ideal gas.

The thermodynamic formalism to understand phase separation
is as follows: an unstable mixture of composition f0 splits into two
coexisting phases in a slab-like geometry respecting volume and
mass conservation, with the equilibrium configuration being a
minimum of the free energy (Fig. 1(a)). The volume fraction of
the two coexisting phases are fin, and fout respectively, with Vd

denoting the volume occupied by phase with density fin, and
F bðfÞ is the Helmholtz free-energy per unit volume (in units of
kBT

a3
). The solvent fraction is f ¼ Vd

V
, and the free-energy density

FðfÞ of the planar configuration (Fig. 1(a)) is given by,

Fðfin;fout; f ; lÞ ¼ fF bðfinÞ þ ð1� f ÞF bðfoutÞ þ F sð f Þ
þ l f0 � ffin � ð1� f Þfout½ �; (1)

where F s = 2gV�1/3, corresponds to the surface energy with g being
the surface tension, V the volume of the system considered, and l a
Lagrange multiplier that enforces the mass conservation
constraint.

A calculation of the equilibrium thermodynamics proceeds
via minimising the free energy in eqn (1) w.r.t to the independent
quantities fin, fout, f, and l. The constrained minimization of the
free-energy function in eqn (1) w.r.t. fin, fout and f leads to the
common tangent construction

m(fin) = m(fout), and P(fin) = P(fout), (2)

where m(f), and P(f) refers to the exchange chemical potential
and the osmotic pressure of the phases respectively. Eqn (2)
ensures chemical, and mechanical equilibrium (see ESI†).
Thermal equilibrium is ensured as calculations are carried
out in a constant temperature ensemble. We obtain coexistence
volume fractions fin and fout from eqn (2). The solvent fraction
f is obtained by minimising the functional w.r.t l, i.e @F (fin,

fout, f, l)/ql = 0, which yields, f ¼ f0 � fout

fin � fout

. For a planar

interface, the surface energy term does not explicitly depend on
the solvent volume fraction f. Consequently, the minimisation
conditions lead to four uncoupled equations (ESI†) and a
knowledge of the coexistence volume fractions fin and fout is
enough to determine f. As evident from eqn (1), the effect of the
surface energy term vanishes in the thermodynamic limit, i.e.,
as volume V - N. In contrast, a spherical droplet geometry
introduces a non-trivial coupling among the minimisation
conditions and a knowledge of the volume, V, of the system
is required to obtain the equilibrium configuration.

A spherical droplet

Spherical droplets of the minority phase arise in finite systems
when the volume fraction is less than a critical value.32,33 The
thermodynamics in such situations differ from the common
tangent construction and leads to the classical Gibbs-Thomson
relations.4 Fig. 1(b) shows an unstable system of volume frac-
tion f0, that phase separates into a background matrix of
volume fraction fout and a single droplet of radius R of volume
fraction fin in a finite box of volume V. Assuming an ansatz of a
phase separated mixture comprising of N spherical droplets of
identical radius R, (referred to as the micro-droplet phase

henceforth), the solvent fraction is given by f ¼ N
4

3
pR3=V

� �
.

The free energy of the micro-droplet phase is therefore F = f

Fb (fin) + (1 � f ) Fb (fout) + Fs( f ), where F sð f Þ ¼
N

V
4pR2g,

accounts for the interfacial energy between the droplet and the
background phase. By imposing the mass conservation con-
straint and expressing the surface energy in terms of the solvent
fraction f, the free energy per unit volume is given by

F dðfin;fout; f ; lÞ ¼ fF bðfinÞ þ ð1� f ÞF bðfoutÞ
þ 36pf 2N=V
� �1=3

g
þ l f0 � ffin � ð1� f Þfout½ �: (3)

The surface energy of the droplet depends on the solvent
fraction f on account of the its spherical shape. The equilibrium
conditions therefore lead to four coupled equations, involving
the yet unknown system volume V. The chemical and

Fig. 1 A (i) common tangent (solid pink line) and a (ii) parallel tangent
(dashed green line) construction for planar interfaces (a) and droplets (b)
(with volume Vd) for a binary polymer mixture. A Flory–Huggins functional
with w = 1.2wc, NA = 100, NB = 200 is used. Coexistence volume fractions
inside fin and outside fout droplet approach the values obtained for a flat
interface fa, and fb in the thermodynamic limit V - N.
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mechanical equilibrium conditions for the micro-droplet phase
involving the coexisting densities translates to, m(fin) = m(fout)

and PðfinÞ ¼ PðfoutÞ þ 2g
4pN
3fV

� �1=3

, where the extra term in

the pressure equation accounts for the Laplace pressure acting
across the interface. We carry out a minimisation procedure
akin to the planar interface to obtain the solvent volume
fraction f, and the coexistence volume fractions inside and
outside the droplet, fin and fout respectively for a given box
volume V. In the absence of elastic interactions the equilibrium
phase corresponds to a single droplet of the minority phase, i.e.
N = 1 in eqn (3). The radius of the drop is determined in terms
of the coexistence densities and is given by

R = nL, (4)

where n ¼ 3ðf0 � foutÞ
4pðfin � foutÞ

� �1=3

, and L = V1/3 is the length of the

cubic box. We apply the framework to compute the radius of
the minority phase droplet of a binary polymer mixture
described by a Flory–Huggins free energy in the thermody-
namic limit i.e. V - N, performing our calculation for differ-
ent box volumes V. The surface tension g for the micro-droplet
phase is taken to be the same as that of a planar interface.

The thermodynamics of binary polymer mixtures is
well described by the Flory–Huggins free-energy

F bðfÞ ¼
1

NA
f lnfþ 1

NB
ð1� fÞ lnð1� fÞ þ wfð1� fÞ, where

NA, and NB are the lengths of A and B polymers respectively,
and w is the mixing parameter. For w 4 wc, where wc is the value
of the mixing parameter at criticality, the mixture is unstable
and spontaneously phase separates into low and high volume
fraction phases determined by the minimisation conditions.
We consider an unstable polymer mixture with NA = 100, NB =
200, and an initial composition f0 = 0.35, and w = 1.2wc. Fig. 1(a)
shows the common tangent construction which yields the
coexistence volume fractions fa = 0.235 and fb = 0.885 for a
flat interface. If the amount of material is not enough, the
minority phase forms a droplet whose coexistence volume
fractions outside fout and inside fin are determined by the
parallel tangent construction (Fig. 1(b)) as a function of the box
volume V. A combination of the parameters f0, fa and fb

determines that the fraction of the solvent-rich phase f E 0.17.
The equilibrium phase is a single drop. To obtain the coex-
istence volume fractions and the droplet radius in the thermo-
dynamic limit, we perform parallel tangent constructions for
cubic boxes of lengths L = 160, . . . 104 using eqn (4).

Fig. 2 shows a finite size scaling analysis of the droplet
radius R in units of the box-size L, (R/L) as a function of 1/L.
The thermodynamic limit 1/L-0 corresponds to the y-intercept
R/L E 0.34 for the Flory parameters listed above. The numerical
derivative of R/L w.r.t. L approaches zero in this limit (Fig. 2
inset). The solvent fraction f, is also a function of the systems
size (f B (R/L)3). The coexistence densities calculated from
eqn (4) are functions of L and can be quantified in terms of
their deviation from the coexistence volume fractions for a
planar interface, i.e., ~fin = (fin�fb)/fb and ~fout = (fout�fa)/fa.

As shown in Fig. 2 fout - fa, and fin - fb in the
thermodynamic limit.

A microdroplet phase

The Helmholtz free-energy per unit volume of the micro-droplet
configuration of a gel–solvent mixture, with N droplets (see
Fig. 4(d) inset), is given by

F gðfin;fout; f ;lÞ ¼ fF bðfinÞ þ ð1� f Þ F bðfoutÞ½ þFelð f Þ�
þFsð f Þ þ l f0 � ffin � ð1� f Þfout½ �; (5)

where F bðfÞ is the Flory–Huggins free energy given by

F bðfÞ ¼ f lnfþ 1

NB
ð1� fÞ lnð1� fÞ þ wðTÞfð1� fÞ. We con-

sider a situation where the strand length of the gel, NB, is
considered to be finite in these calculations (NB = 25 and NA = 1).
The reason for this, and not letting NB - N, is based on
stability arguments and is discussed in the ESI† and we set
w(T) = 1.38wc in our calculations. The surface-energy per unit

volume in eqn (5), Fsð f Þ ¼
4pN
V

� �1=3

ð3f Þ2=3g is expressed in

terms of the solvent fraction f using the relation between the

drop radius and the number density, i.e., R ¼ 3fV

4pN

� �1=3

. The

elastic part of the free-energy density in eqn (5) can be expressed
as a function of the solvent fraction, f, (see ESI†) and is given by

Felð f Þ ¼
4pNðR3 � R3

0Þ
ð1� f ÞV

ðR=R0

1

l2WðlÞ
ðl3 � 1Þ2dl: (6)

To incorporate the effects of the finite stretch-ability of the
gel, we adopt the Gent model.34,35 The elastic free energy

density has the form, WðlÞ ¼ �GJm
2

ln 1� J

Jm

� �
, where J = lr

2 +

ly
2 + lf

2� 3, with l’s corresponding to the strains in the radial,
azimuthal, and polar directions, Jm B 106 is the stretching limit
of the network, and G is the shear modulus. The shear modulus
is related to the microscopic parameters via the relation,

G ¼ 3

2
kBTndry ¼

3

2

kBT

R3
0

, where ndry and R0 are the average

cross-link density and the mesh size of the dry gel

Fig. 2 Finite size scaling of equilibrium drop radius R(L)/L, of a phase
separated binary polymer mixture using a Flory–Huggins free energy
functional with parameters described in Fig. 1. Coexistence volume
fractions inside and outside the droplet fin and fout approaches the coex-
istence values obtained from a common tangent construction as L - N.
Inset shows the rate of change of the radius approaches zero as L - N.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Se

pt
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 7

/2
1/

20
24

 9
:1

9:
21

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D2SM01101H


8120 |  Soft Matter, 2022, 18, 8117–8123 This journal is © The Royal Society of Chemistry 2022

respectively36 (see ESI†). Due to the volume-preserving nature
of the deformation, lr = 1/l2 and lf = ly = l and its magnitude is
bounded, i.e., 0 o J/Jm o 1.34 The energy minimisation condi-
tions w.r.t the independent variables as outlined earlier, leads
to a modified equilibrium conditions: m(fin) = m(fout) and

PbðfinÞ ¼ PbðfoutÞ þ 2g
4pN
3fV

� �1=3

þð1� f ÞF 0elð f Þ � Felð f Þ.

These conditions lead to a set of coupled equations that we
solve numerically to yield the four unknown variables, fin, fout,
f, and l, associated with each droplet number, N. A geometrical
interpretation of these equations lead to the construction of
parallel tangents.

We substitute the equilibrium values of the coexistence
volume fractions and solvent fraction into the original free-
energy expression in eqn (5), to obtain a free energy F̃(N), as a
function of the number of droplets N. The minimisation of F̃(N)
w.r.t N yields Nm, the optimal number of droplets of the micro-
droplet phase.

Fig. 3(a) shows the free-energy F̃(N) = F g(N) �F g(1) (eqn (5))
as a function of the number of droplets, once the coexistence
volume fractions have been obtained for a cubic box of side L =
200 and the surface tension g = 1.67 � 10�3 (in units of kBT/a2).
It is evident that this is a convex function, with a well defined
minimum occurs around Nm E 23. The inset shows the
contrasting behaviour of F̃(N) for a binary polymer mixture.
In the absence of elastic interactions, surface tension domi-
nates the thermodynamics and a phase with a single droplet is
the equilibrium state corresponding to the free energy mini-
mum. The convex nature of the free energy F̃(N) arises from a
balance between the surface, elastic, and bulk free energies of
the micro-droplet phase. As the number of droplets N increases,
the surface energy monotonically increases on account of the
increase of the total interfacial area. In contrast, the elastic
energy monotonically decreases as a function of N, since an

increase in the number of droplets translates to smaller sized
drops and less deformation of the gel matrix. The elastic free
energy has a lower bound corresponding to a minimum droplet
of size R/L B a, length of a monomer. The combined effect of
these two contributions to the free energy therefore stabilizes
the micro-droplet phase. The bulk free energy is nearly inde-
pendent of N. Fig. 3(b) shows the variation of the different
components of the total free energy as a function of the number
of droplets N, while Fig. 3(c) shows the variation of number
density n = Nm/V, and droplet radius R as a function of the shear
modulus G. The shear modulus G is tuned by varying the mesh
size, R0, of the gel. We compute the number density by mini-
mizing F̃(N) w.r.t. N and determine the drop radius using
R(Nm) = (n/Nm

1/3)L for a given shear modulus G. As shown,
the radii of the droplets decrease (and hence the number
density n increases commensurately) as the gel becomes stiffer.

The convex nature of F̃(N) as a function of N is independent
of the system size L as shown in Fig. 4(a). Fig. 4(b) shows the
dependence of F̃(N) as a function of the surface tension, g =
0.0025, . . . 0.004, while keeping the shear modulus of the gel–
solvent mixture fixed at G = 1.9 � 10�4 (in units of kBT/a3). The
free energy minimum shifts to smaller values of Nm with
increasing surface tension as shown in Fig. 4(b). The inset of
Fig. 4(b) shows that for g o gc E 4.0 � 10�3, a micro-droplet
phase is the equilibrium configuration, with Nm, monotonically
increasing with decreasing g. Fig. 4(c) shows that the equili-
brium number density of droplets n = Nm/V, and the droplet
radius R(Nm) have reached a thermodynamic limit and are
independent of the system size L. Fig. 4(d) shows the phase
boundary demarcating regions of a stable macro-droplet and
dispersed micro-droplet phases in the g�G plane. The mean
field phase-boundary (symbols) qualitatively agrees with the
scaling results31 (red dashed line) for softer gels while signifi-
cant deviations are observed for stiffer ones. The mean-field
phase boundary (symbols) is now a function of the gel-strand
length NB, a variable that is associated with the network
wheterogeneity of the system. Such quenched disorder dramati-
cally modifies the equilibrium thermodynamics of gel networks.

Fig. 5 (a), which is similar to Fig. 4(d), shows the contour-
plot of the dimensionless ratio between the surface energy and
the elastic energy, h/a, has been shown in the g–G plane, where
a is equal to 2.5 (see ESI† for a discussion on this). Also shown
is the phase boundary from the mean field theory calculations
(inverted triangles, the inverted triangle and the dashed line are
similar to that presented in Fig. 4(d)). Simple scaling argu-
ments would suggest that the phase boundary would occur at
h/a equal to unity (see the dashed line in Fig. 5(a)) and we
observe that for small values of the shear modulus, G, this is
indeed the case. However, as the value of G increases deviations
between the mean-field phase boundary (inverted triangles)
and the h/a equal to unity increase. In order to facilitate
comparison with present and future experiments, we have
studied how the equilibrium number of droplets evolve as a
function of a tuning parameters (shear modulus or surface
tension in this case) as one crosses the phase boundary along
the principal directions in the phase plane. Panel (b) shows the

Fig. 3 Total free energy, (a), as a function of the number of droplets N
showing a minimum at Nm E 23 for L = 200. Surface energy Fs, increases,
the elastic energy Fel, decreases, whereas, the bulk free energy F bðfÞ is
almost independent of N as shown in (b). Panel (c) shows the dependence
of the droplet radius R and the number density of the droplets n and the
shear modulus of the gel G. The inset of panel (a) shows the free-energy as
a function of the number of droplets for a system with no elastic
interaction. Thus a single macro-droplet is the stable phase.
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transition from a dispersed micro-droplet to a single macro-
droplet as one crosses the phase boundary while keeping G
fixed and increasing g. For g o gc, the dependence of the
number of droplets on the surface tension follows the linear

relationship, Nm ¼ 31:8 1� g
gc

� �
. Similarly, panel (c) shows the

transition from a single macro-droplet to a dispersed micro-
droplet state when one keeps g constant and increases G and
here the dependence of the number of droplets on the elastic

modulus again follows a linear dependence

Nm ¼ 39:2
G

Gc
� 1

� �
. The linear dependence of the number of

droplets on the elastic modulus of the matrix is a result of the
mean-field theory calculations (and not an assumptions as in16)
and has been observed in the experiments.14

In summary, we consider phase separation in an elastic
medium, where the background matrix influences the equili-
brium thermodynamics of the. Previous studies consider the
background matrix as an inert phase.16,17 For composition
regimes where the solvent is a minority phase and there is a
dearth of material to form a flat interface, solvent-rich droplets
coexist with the majority phase. We demonstrate, via a mean-
field theory that the dispersed micro-droplet phase is indeed a
thermodynamic minimum for a binary gel–solvent mixture.
A competition between surface tension and network elasticity
stabilizes this phase. When the surface-tension exceeds a
critical value, a single macroscopic droplet is the stable ther-
modynamic phase. Though the Flory–Huggins functional has
been used to describe polymer mixtures, our results are generic
and valid for any bistable potential.37

3 Discussion

A macroscopic gel would possess intrinsic heterogeneities in
the mesh size resulting in different values of NB in different
that leads to a micro-droplet phase with different sized
droplets.38 Thus our mean-field theory needs to be extended
to incorporate a distribution of mesh sizes, i.e. P(NB). Assuming
that the disorder correlation length is c, our mean-field theory
is applicable for length scales cr c from which the coexistence
densities fin and fout can be obtained. The coexistence den-
sities are functions of NB, a parameter in the FH free-energy.
Thus a distribution of mesh sizes, P(NB), leads to a distribution
of coexistence volume fractions (akin to ‘‘mosaic state’’ in spin-
glass models39) within the sample, which can be computed
using the formalism presented here. The differing coexistence
volume fractions in different parts of the sample corresponding
to different local values of NB would result in additional surface
energy cost between domains that has not been considered in
the present calculation. However, this would have effect on the
thermodynamics of the mixture gel–solvent mixture.13 Upon
investigating the slope of the common-tangent for the bulk
free-energy, F bðfÞ, for different values of NB, we infer that at a
constant temperature (and hence constant w(T)) the effect of
increasing NB leads to the lowering of the slope of the common
tangent. Thus, a heterogeneous mesh-size would result in
random slopes of the common tangent to F bðfÞ. The situation
is analogous to the behaviour of random-field Ising models,
where the relative depth of the bistable free-energy is set by the
value of the field h(x).40

The effect of network disorder and its relation to the
thermodynamics of random field Ising models would be stu-
died in a future work. Elastically mediated phase transitions
admit a third thermodynamic phase, where the gel network

Fig. 4 Free energy of the micro-droplet phase F̃(N) vs. number of
droplets, N for different system sizes L = 100, 200, . . . 500 is shown in
panel (a). Panel (b) shows F̃(N) vs. number of droplets, N, when the surface
tension is varied between g = 0.0025, . . . 0.004. Inset of (b), shows a stable
micro-droplet phase for g o gc E 4.0 � 10�3 for G = 1.9 � 10�4kBT/a3 and
box size L = 200. The number density and droplet radii n, and R as a
function of system size L is shown in (c), and a phase boundary demarcat-
ing regions of stable macrodroplet and multiple micro-droplet phase is
shown in panel (d). The symbols denote the phase boundary computed via
mean-field theory (NB = 25) and the dashed line is that via scaling
arguments.

Fig. 5 Panel (a) shows the contour plot of the dimensionless ratio h/a in
the g–G plane, where a is equal to 2.5. The inverted triangles denotes the
phase-boundary between the macro-droplet and the dispersed micro-
droplet phases computed from our mean-field theory. Panel (b) and (c)
shows the macro-droplet to dispersed micro-droplet transition as one
crosses the phase boundary along the two principal directions.
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partially wets and intrudes the solvent rich droplets.31 A varia-
tional calculation allowing for polydisperse droplets and their
associated wetting behaviour is currently underway and will be
reported elsewhere.

We place our work in context of previous work in this
exciting area. The importance of elastic interactions in modify-
ing the equilibrium state of phase separating system was first
discussed in context of a ternary system with the elastic network
and a polymer interacting with a solvent.14,15 The stability of a
droplet phase is argued along the lines of classical nucleation
theory, using the Gibbs free energy (eqn (1) of15) to relate the
work done by an expanding drop against the pressure exerted by
the bounding polymer network. The droplet is identified as a
dilute solvent and the ideal gas equation is used to determine

the chemical potential difference Dm ¼ kBT ln
f
fsat

� �
. Based on

this formalism (and the eqn (1)–(9) of the ESI†) the authors argue
that when f o fsat, the mixture is stable, independent of
elasticity. When f 4 fcond, the mixture is unstable. While in
the interim region fsat o f o fcond a microdroplet phase is
stabilised. This experimental situation is closely modelled by
Kothari et al.17 who focus on the kinetics of a three-component
system written in terms of the volume fractions of liquids A
(uncrosslinked part of the background gel) fA, part of liquid B
fB that resides within the gel, and fD, the part of liquid B which
exists in droplet form. Our model bears resemblance with the
model free energy proposed by Wei et al.,16 though differing
significantly in detail. Perhaps the work that is most relevant to
the present study is the beautiful scaling theory backed by
simulation data by Ronceray et al.31 We believe that our work
is the first calculation against which these results can be
compared. In fact, the schematic phase diagram (Fig. 2 of31)
can be derived from the thermodynamic treatment presented in
the present manuscript. In addition, deviations from the scaling
theory can also be captured within our model. We hope that our
work will prompt careful experimental and theoretical studies in
this area. Lastly, we note that our thermodynamic formalism
does not capture the exciting non-equilibrium effects.38 A time-
dependent Ginzburg-Landau formalism based on the free energy
form explored in this article that incorporates network inhomo-
geneity, and adhesion of droplets to gel matrices will be explored
in a future study. We hope that our theoretical work will instigate
experimental work on binary gel–polymer mixtures towards a
complete understanding of this fascinating problem.
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