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Sensitivity of viscoelastic characterization in
multi-harmonic atomic force microscopy†

Abhilash Chandrashekar, ‡a Arthur Givois, ‡§*a Pierpaolo Belardinelli, b

Casper L. Penning,a Alejandro M. Aragón, a Urs Staufer a and Farbod Alijani *a

Quantifying the nanomechanical properties of soft-matter using multi-frequency atomic force

microscopy (AFM) is crucial for studying the performance of polymers, ultra-thin coatings, and biological

systems. Such characterization processes often make use of cantilever’s spectral components to discern

nanomechanical properties within a multi-parameter optimization problem. This could inadvertently lead

to an over-determined parameter estimation with no clear relation between the identified parameters

and their influence on the experimental data. In this work, we explore the sensitivity of viscoelastic

characterization in polymeric samples to the experimental observables of multi-frequency

intermodulation AFM. By performing simulations and experiments we show that surface viscoelasticity

has negligible effect on the experimental data and can lead to inconsistent and often non-physical

identified parameters. Our analysis reveals that this lack of influence of the surface parameters relates to

a vanishing gradient and non-convexity while minimizing the objective function. By removing the

surface dependency from the model, we show that the characterization of bulk properties can be

achieved with ease and without any ambiguity. Our work sheds light on the sensitivity issues that can be

faced when optimizing for a large number of parameters and observables in AFM operation, and calls for

the development of new viscoelastic models at the nanoscale and improved computational

methodologies for nanoscale mapping of viscoelasticity using AFM.

1 Introduction

Viscoelastic characterization of soft-matter at the nanoscale is
important for understanding cell membrane functioning,1–4

developing innovative materials in polymer science,5–7 and
for advancing nanolithography.8,9 In this regard, dynamic
atomic force microscopy (AFM) has emerged as an indispen-
sable tool for characterizing nanomechanical properties of soft
matter, offering diverse operating conditions under which a
wide variety of samples can be probed with gentle forces.10,11

Dynamic AFM imaging offers multiple observable channels
in the form of higher harmonics, modal amplitude, and phase
contrast signals to map nanomechanical properties. Among
multi-harmonic AFM techniques, the emergence of bi-modal

and intermodulation AFM (IM-AFM) has led to a drastic
increase in the number of experimental observables and a
consequent advancement in our understanding of material
properties at the nanoscale. In particular, IM-AFM extends
the concept of multi-frequency observables by providing a fast
and convenient method to measure a set of frequency compo-
nents in a narrow frequency band centered around the funda-
mental resonance of the AFM cantilever.12,13 These frequency
components directly benefit from the mechanical resonance
gain of the first mode and can be easily converted to tip-sample
force quadratures, which are in turn linked to the conservative
and dissipative interactions with a sample.13,14

Despite the advancements in AFM instrumentation and the
abundance of viscoelastic models at hand,15–20 a consistent and
robust estimation of viscoelasticity using AFM has remained a
challenge.4 This is mainly due to the fact that the composi-
tional contrast of AFM images depend on several nanomecha-
nical properties including elasticity, surface relaxation, and
adhesion. Untangling these effects from one another requires
setting up an optimization problem, where a large parameter
space has to be searched to minimize the error between the
simulations from a model and experimental data. But, similar
to any optimization problem, the insensitivity of the model
parameters with respect to the measurement data on one side,
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and the non-convexity of the objective function on the other
side, can lead to non-unique and often non-physical estimation
of parameters. Therefore, knowledge about the sensitivity of the
model parameters to AFM observable channels is of paramount
importance to extract consistent and reliable viscoelastic prop-
erties in dynamic AFM applications.

In this article we discuss the sensitivity issues that can arise
when characterizing viscoelasticity using multi-frequency IM-
AFM. We perform measurements on a polymer blend made of
stiff Polystyrene (PS) and soft Low-Density-Polyethylene (LDPE),
and use a moving surface model19,21 to extract the bulk and the
surface viscoelasticity. The estimation of viscoelastic properties
is achieved by matching the experimental spectral components
of tip-sample force to the ones predicted by a computational
model via an optimization procedure. To ascertain the sensi-
tivity of the model parameters on the physical observables, we
perform a comprehensive comparison involving both local and
global optimization techniques, and reveal a lack of sensitivity of
surface motion to the experimental data obtained from IM-AFM.
We show that the issue of insensitivity manifests itself during the
optimization of the objective function by means of a vanishing
gradient with respect to the surface parameters. To overcome this
problem, we introduce a simple model, neglecting surface motion,
which leads to statistically consistent and robust identification of
bulk viscoelastic parameters. This work thus provides a general
framework that can be used for investigating the reliability of
similar viscoelastic models used for nanomechanical characteriza-
tion in multi-frequency AFM applications.

2 Experimental results

We perform our experiments with a commercial AFM (JPK
nanowizard 4) and use a multi-lock-in amplifier (Intermodula-
tion products AB) to measure and analyse the frequency
components resulting from the tip-sample interaction.
A rectangular Silicon cantilever (Tap190Al-G, BudgetSensors)
probes the viscoelastic response of a polymer blend made
up of PS-LDPE materials. The stiffness of the cantilever
(k = 26.70 N m�1), its resonance frequency ( f0 = 153.9 kHz)
and the quality factor (Q = 596) are determined using the
thermal calibration method.22 A schematic of the intermodula-
tion AFM setup is shown in Fig. 1. The cantilever is excited with
two frequencies centered around its fundamental mode of
vibration. The interaction of the cantilever with the sample,
under the influence of nonlinear surface forces, generates
frequency combs that are measured using the lock-in amplifier.
In particular, the amplitude and phase of the combs are used as
experimental inputs for the viscoelastic identification proce-
dure. Details of IM-AFM operation and processing of the
experimental data can be found in ref. 12, 13, 21, 23, we
summarize the essential operations in Section S1 of the ESI.†

The experiments performed on the PS-LDPE polymer blend
are reported in Fig. 2. Fig. 2(a and b) depict the amplitude and
phase images at the second drive frequency o2. The phase
image is presented for one specific LDPE island surrounded by

PS matrix. In total 32 amplitude and phase intermodulation
components are used to reconstruct the tip-sample interaction
in the narrow frequency band around the fundamental reso-
nance. Furthermore, the frequency components are used to
calculate the tip-sample force quadratures, which represent the
time averaged interaction force that the cantilever experiences
in one oscillation cycle (see Fig. 2(c–f) for both PS and LDPE).

Fig. 1 Schematic of the working principle of the IM-AFM. The cantilever is
driven with a signal comprising two close frequencies o1 and o2, centered
around its first resonance frequency. The intermodulation distortion
caused by the nonlinear tip-sample interaction creates frequency comb
at commensurate frequencies oIM = m1o1 + m2o2, with m1,m2 A Z. The
linear transfer function of the cantilever w(o) is measured via thermal
calibration, and the amplitudes and phases of these intermodulation
products are captured using a multi-lock-in amplifier. Here, dc and ds

denote the tip cantilever and surface vertical displacements and h
corresponds to the working distance between tip and sample. Finally,
s = h + dc � ds represents the tip-sample distance.
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The force quadratures are a local measure of material proper-
ties since they are calculated for every pixel of the AFM image;
they provide information about the conservative and dissipative
contributions of the interaction force between the tip and the
sample. For instance, the in-phase quadratures provide infor-
mation about the amount of adhesive (positive part) and
repulsive (negative part) forces at the measured pixels.21

3 Modelling tip-sample interaction

In order to probe the viscoelastic response of the sample and
interpret the in-phase and out-of-phase quadrature information
quantitatively, we begin by describing the dynamics of the AFM
cantilever using the following simple model:24,25

1

o0
2

€dc þ
1

Qo0

_dc þ dc ¼
1

k
FdðtÞ þ Ftsðs; _sÞð Þ; (1)

where dc describes the total deflection of the cantilever from its
equilibrium, o0 = 2pf0 denotes its resonance frequency, k

represents the stiffness of the cantilever, t denotes the time
and Fd is the excitation force. The above equation couples to the
sample through the nonlinear tip-surface force

Ftsðs; _sÞ ¼ �Fad � kvs� Zv _s; if s � 0;
0 if s4 0:

�
(2)

Here, the piecewise linear (PWL) model assumes Fts to be
function of the indentation (s) and the rate of indentation (:s).
In eqn (2), the tip-sample interaction comprises of an adhesion
force represented by Fad, a repulsive force due to surface
indentation governed by the bulk sample stiffness kv, and
finally, a viscous force due to material flow upon indentation
governed by the coefficient Zv. It must be noted that the PWL
model preserves an essential feature of the interaction that is
well-known in AFM, which is the presence of large force
gradient localized near the point of contact, i.e at s = 0. This
rapid change of force is responsible for the jump-to-contact and
pull-off hysteresis seen in nearly all quasi-static force curves in
AFM. However, in dynamic AFM, the oscillation amplitude is
typically much larger than the range of this localized inter-
action. Hence, we approximate this region of large interaction
gradient as an adhesion force that instantly turns on and off
when crossing the point of contact, whose magnitude is coun-
terbalanced by the contribution of the velocity-dependent term
Zv
:
s.

We then couple the cantilever dynamics with a moving
surface model19,21 to account for the motion of the sample
interacting with the tip

Zs
:
ds + ksds = �Fts(s,:s). (3)

here, the stiffness and viscosity of the sample surface are ks and
Zs, respectively. The instantaneous surface motion is related to
the cantilever oscillation through the relation s = h + dc � ds,
where h is the height between the apex of the cantilever tip and
the unperturbed sample position as shown in Fig. 1. Unlike
classical contact mechanics models, our model implicitly
accounts for the effects of tip radius and indentation rate via
the effective bulk stiffness kv and the surface stiffness ks

parameters.
The tip-sample interaction process as described by eqn (1)–

(3) introduces a large set of unknown parameters that shall be
extracted from the intermodulation components. However, few
of them, namely o0, Q, and k are obtained directly from thermal
calibration.26 This reduces the unknown set of parameters that
needs to be identified to P = {Fad, kv, Zv, ks, Zs, h}. At this stage,
the optimization problem is written as:

find minPAR6f (P) (4)

with f (P) the objective function defined as:13,27,28

f ðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
o¼oIM

~Fts;expðoÞ � ~Fts;simðo;PÞ
�� ��2s

(5)

where F̃ts,sim and F̃ts,exp denote the complex spectral compo-
nents of the simulated and experimental interaction force at
the intermodulation frequencies oIM, respectively.

Fig. 2 Experimental measurements performed on the PS-LDPE polymer
blend. (a) Amplitude image at the second drive frequency (o2), which is
part of the 32 different image pairs captured during the scanning opera-
tion. (b) Phase image at the second drive frequency. The image shows an
island of LDPE within the PS matrix (red dashed box in Fig. 2(a)). The points
of measurements are indicated with black crosses. (c–f) Experimental
force quadratures obtained at the pixels marked by black crosses in the
phase image. The quadratures in subfigures (c–f) are obtained on PS
material, whereas the quadratures in sub figures (d–e) are obtained on
LDPE material.
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4 Linking viscoelasticity to
intermodulation components

We start the identification by analyzing the two pixels denoted
by (i) and (iii) in Fig. 2(b). These pixels belong to the PS and the
LDPE material, respectively. The optimization of the model
parameters is carried out using the Levenberg–Marquardt
algorithm since it has strong convergence properties and
robustness against numerical inconsistencies.29 We note that
the minima obtained by the optimizer are largely dependent on
the initial points (IP) chosen for the unknown parameter set P.
Thus, several initial starting configurations are tested for the
identification procedure; these are selected based on values
previously reported in the literature30–33 (see Section 3 in ESI†
for additional details).

Table 1 summarises the identified model parameters and
the corresponding errors between the simulation and the
experimental counterparts for several different IPs on pixels
(i) and (iii). Here, we note that the surface stiffness (ks) and
damping (Zs) of LDPE are much higher than PS matrix. This
qualitative and counter-intuitive result can be explained con-
sidering that LDPE has a smaller Young’s modulus than PS and
thus is prone to a larger penetration and contact area, resulting
in a larger ks. Nonetheless, we observe that the estimated values
of the surface parameters vary by several order of magnitudes
without significant change of the objective function, which
raises questions about the reliability of the identification of
surface parameters. Furthermore, we make a qualitative visual
comparison in Fig. 3(a) and (b) by reconstructing the cantilever
motion (green) and the surface motion (pink) and highlight
that the signals look identical, even though the identified
parameter values exhibit large differences. Additionally, in
Fig. 3(c) and (d) the surface motion in case of LDPE is strongly
dependent on the choice of IPs and consequently leads to
different parameter value estimations. Contrary to the popular
notion which considers that surface and tip displacements are
identical during contact, the moving surface model presented
in Section 3 allows to characterize different surface motion
amplitudes. In particular, the magnitude of the surface

displacement in case of soft LDPE is much smaller compared
to the stiff PS material.

We relate the above remarks to possible insensitivity of the
objective function towards certain model parameters and the
presence of multiple local minima, which indicates that
the objective function is non-convex. To elaborate on these
issues, we analyze the topography of the objective function in
the space of model parameters on large variable ranges. We
note that the objective function includes 6 parameters, out of

Table 1 Extracted results from a large set of local minimization routines
using Levenberg–Marquardt algorithm, using the model which includes
surface motion and the grid of initial points (IPs) defined in Table S3.5 of
ESI. The initial points are ranked according to the best results, defined here
as the lowest errors/highest R2

Initial point

Pixel (i)-PS Pixel (iii)-LDPE

IP 1 IP 55 IP 99 IP 1 IP 22 IP 87

Fad (nN) 30.5 31.6 41.6 7.08 7.12 7.13
kv (N m�1) 94.9 43.2 89.5 0.848 0.854 0.860
Zv (mg s�1) 15.5 7.33 6.60 0.520 0.521 0.521
ks (N m�1) 18.8 16.8 11.8 123.8 239.3 28.4
Zs (mg s�1) 0.0552 0.00884 0.993 57.2 0.0594 62.0
h (nm) 26.35 24.69 24.11 14.43 14.69 14.67
Final E (nN) 0.511 0.537 0.579 0.193 0.194 0.194
R2 0.961 0.957 0.950 0.979 0.979 0.979

Fig. 3 Simulations of the cantilever (green) and sample (pink) surface
dynamics based on the results provided in Table 1. (a and b) Simulated
results for PS material with parameter values taken from IPs 1 and 55,
respectively. (c and d) Simulated results for LDPE material with parameter
values taken from IPs 1 and 87. (e–h) A close up visualization of the surface
dynamics is reported in (a–d).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
N

ov
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

2/
2/

20
24

 1
0:

58
:1

7 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D2SM00482H


8752 |  Soft Matter, 2022, 18, 8748–8755 This journal is © The Royal Society of Chemistry 2022

which Fad and h show consistent convergence. Hence, we limit
our analysis to the bulk and surface viscoelastic parameters
governed by kv, Zv, ks, and Zs. This is showcased in Fig. 4, where
the topographies of the objective function are obtained by
sweeping across the viscoelastic parameters for both PS and
LDPE material at pixels (i) and (iii), respectively. In each sub-
figure, the four non-varied parameters are chosen as those of IP
1 in Table 1. Interestingly, we note that Fig. 4(a) and (b) exhibit
a valley in which a single optimum solution is found. This is
further highlighted in the 2D cross sections shown as Fig. 4(c)
and (d), confirming the strong dependency of parameters kv

and Zv on the experimental observables. Contrary to this,
the landscape of Fig. 4(e) and (f) highlight multiple local
minima (in the case of pixel (i) in Fig. 4(e)) and a flat
topography (for pixel (iii), in Fig. 4(f)). A flat landscape
indicates the insensitivity of the objective function to the
surface parameters (ks,Zs) in this region of the parameter
space. This behaviour is also reflected in the large spread of
values reported in Table 1.

In order to verify that these issues do not stem from the local
optimizer used in our simulations, we also employ a heuristic
global optimization technique in pursuit of a global solution in
the parameter space. We create synthetic data sets with known
optima to analyse how the global optimizer performs (for
details see Section 2B in ESI†). We note that the use of this
global optimization strategy also does not lead to a robust
identification of the surface parameters. Indeed, a wide range
of parameter values which differ from several orders of magni-
tude allows for reconstructing the original cantilever motion,
and large differences in the surface viscoelastic parameter Zs do
not affect the objective function. Upon closer inspection of
results, we noticed a trend for synthetic data sets with good
solution convergence, where the bulk parameters of the model,
namely kv, Zv, tends to the original optimum (for details see
Table S2.2 in Section 2B of ESI†). This is in accordance with our
hypothesis regarding the insensitivity of surface viscoelastic
parameters on the experimental observables. Therefore, fine-
tuning of the global optimization parameter space is effective
in determining bulk viscoelastic parameters. Nevertheless, iso-
lation of non-physical solutions as outliers is computationally
expensive when aiming for fast parameter estimation. For this
reason we explore an alternative local optimization route paired
with an initial point selection procedure in the following
section.

Estimating bulk viscoelasticity in the absence of surface
motion

In order to overcome the aforementioned limitations as well as
to improve the computational efficiency for the parameter
estimation procedure, we neglect the surface dynamics
of the sample and reduce the unknown parameter set to
%P = {Fad,kv,Zv,h}. This assumption holds in particular for the
case where the surface displacement is much smaller than tip
displacement (|ds| { |dc + h|). This hypothesis is valid for the
LDPE (softer) material according to the displacement signals
shown in Fig. 3. It must be noted that this reduced set is still

descriptive of the nanomechanical mapping of polymer blends
and coherent with several well-established formulations, e.g.,
Derjaguin–Muller–Toporov (DMT)-Kelvin–Voigt,30 3D Kelvin–
Voigt,34 and DMT–Garcia.35

We begin by repeating the quantitative analysis at pixels (i)
and (iii) of Fig. 2, once again applying the Levenberg–
Marquardt algorithm. In this procedure we use a grid of 34

IPs, by defining three values for the four free parameters of the
model. This choice of three values is motivated by a compro-
mise between a wide range of parameter exploration and a
reasonable simulation duration. These parameter values
include in particular at least one order of magnitude for the
viscoelastic properties (for details see Section S3B in ESI†).
Furthermore, the three values of the probe height h can be
framed from the force quadrature profiles and from onsets of
repulsive forces (for details see Section S2C in ESI†). We then
perform a gradient-based optimization for each combination of
parameters in the parameter space and conduct statistical
analysis by obtaining the Gaussian distribution profiles of the
identified parameters (for more details see Section S3B in ESI†).
Interestingly, for most of the IPs the optimizer converges
towards an admissible physical solution.

Based on this statistical analysis we extract a set of three
initial points for performing the parameter identification at all
pixels of the entire AFM scan. The first two sets of IPs are
derived from the mean values of the Gaussian distribution for
both the PS and LDPE material. Indeed, these mean values lead
to the lowest errors at pixels (i) and (iii). As for the third set, an
IP is chosen which can lead to a set of identified parameter
within a specific confidence interval for both the PS and LDPE
material. The reasoning for choosing such an IP is rooted in our
optimization procedure where, we assume that pixels belong-
ing to the same material have similar objective function topol-
ogy. This assumption may not hold true at the junctions where
the two materials blend. Hence, having a third IP that could
identify the parameters of both PS and LDPE material within a
certain confidence interval is crucial to avoid non-physical
parameter estimation (for details see Section 3.2 of ESI†).
Finally, among the three optimization run at each pixel, we
retain the parameters of the best fit (i.e. the lowest error) as the
identified model parameters.

Fig. 5 shows the identified parameter values for the PS-LDPE
polymer blend. It highlights a clear distinction between the
identified bulk parameters Fad, kv, and Zv between the island
of LDPE and the surrounding PS matrix. This can be seen in
the observed compositional contrast in the colored figures.
Additionally, the histogram displayed on the right side of the
figure highlights clear separated Gaussian profiles for each
of the parameters. The estimated values lie within a 95%
confidence interval for the entire image, as Table 2 shows.
Moreover, we remark that our identified values are in line
with those previously reported in the literature30–33 and align
with the expected physical behaviour of the two polymers,
i.e. (Fa,PS 4 Fa,LDPE, kv,PS 4 kv,LDPE and Zv,PS 4 Zv,LDPE). Our
analysis suggests that intermodulation frequency compo-
nents have a direct correlation with the bulk properties of the
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Fig. 4 Variation of the objective function in a 2-dimensional parameter space comprising ((ks,Zs) or (kv,Zv)), with the other parameters fixed in
accordance with the best results found from the local minimization routine. (a–d) Visualizing the landscape of the minimization objective as a function of
kv and Zv for PS and LDPE material obtained at pixel (i) and (iii) of Fig. 2(b). The purple and orange lines indicate a 2D cross-sectional view of the objective
function. (a–d) Visualizing the landscape of the minimization objective as a function of ks and Zs for PS and LDPE material obtained at pixel (i) and (iii) of
Fig. 2(b). Purple and orange lines indicate 2D cross-sectional views of the objective function.
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sample and the interaction force function can be robustly
characterized.

5 Conclusions

In summary, we studied the dependency of viscoelastic
response of polymeric samples to multi-frequency IM-AFM.
We discussed the sensitivity issues that can be faced when
minimizing the error between IM-AFM spectral components
and a tip-sample force model with surface dynamics, and
confirmed that insensitivity of surface viscoelasticity to experi-
mental observables could lead to non-physical parameter esti-
mations. We attribute this finding to the non-convexity and flat
landscapes of the objective function with respect to the sam-
ple’s surface viscoelastic parameters. This was further rein-
forced with numerical simulations that used both gradient-
based and heuristic global optimization techniques. We
remedy this issue with a simplified model that only accounts
for the bulk viscoelastic parameters and by implementing an
initial point selection procedure that searches a large para-
meter space to estimate model unknowns with ease. This new
framework results in consistent identification of viscoelastic
parameters that are in good agreement with previously reported
values. However, in order to take full advantage of the vast
amount of multi-frequency observables, a more accurate and
sensitive viscoelastic tip-surface model is needed,15,20,32 and
computational developments to speed up the optimization
process are required. Finally, given the growing interest in
developing multi-parametric techniques in multi-frequency
AFM, we believe that the techniques showcased in this work
can be useful in providing guidance to future investigations
that are aimed at studying soft, adhesive and viscoelastic
surfaces of samples.
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