Issue 8, 2022

Scission energy and topology of micelles controlled by the molecular structure of additives

Abstract

We employ coarse-grained (CG) molecular dynamics simulations (MD) to investigate the effects of the molecular structure of additives on the scission energy and morphology of charged micelles. Considering sodium dodecyl sulfate (SDS) as a representative charged surfactant and taking trimethylphenylammonium chloride (TMPAC) and octyltrimethylammonium bromide (OTAB) as oppositely charged additives, we show that the scission energy and topology of micelles vary significantly depending on the molecular structure of the hydrophobic part of the additives. The cyclic aromatic tail of the TMPAC disrupts the core structure of the SDS micelle and hence decreases the micelle scission energy, whereas the linear alkyl tail of the OTAB packs very well with the micelle core and increases the scission energy. Although both the additives have similar head structures, they lead to very different micelle morphologies because of the difference in the shape of their tail structures; ring-like or toroidal shaped micelles are formed in SDS/TMPAC solution whereas bicelle-like structures are formed in SDS/OTAB solution when the additive to surfactant ratio is higher than a certain value.

Graphical abstract: Scission energy and topology of micelles controlled by the molecular structure of additives

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2022
Accepted
26 Jan 2022
First published
27 Jan 2022

Soft Matter, 2022,18, 1678-1687

Scission energy and topology of micelles controlled by the molecular structure of additives

T. Mandal, Soft Matter, 2022, 18, 1678 DOI: 10.1039/D2SM00040G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements