Chiral gelators for visual enantiomeric recognition
Abstract
Introduction of chirality in supramolecular gels has allowed the effective translation and amplification of molecular chirality. Upon integrating the stimuli-responsive nature of these gels with supramolecular chirality, a new platform for the discrimination of the enantiomeric guests through naked eye can be developed. Over the past decade, several groups have reported the development of chiral supramolecular gels for enantioselective recognition through gel formation or collapse. However, to the best of our knowledge, we are yet to come across a review highlighting the utilization of chiral supramolecular gels for macroscopic discrimination of enantiomers. In this article, we have articulated the chiral gelators developed to date for the recognition of different enantiomeric analytes focusing on their mode of recognition with an in-depth analysis of the mechanism of interactions assisting the recognition process.