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diastereodivergence discovered
in an equally rare enantioselective syn-aza-Henry
reaction†

Jade A. Bing, Nathan D. Schley and Jeffrey N. Johnston *

Attention to the aza-Henry reaction, particularly over the past two decades, has resulted in a wide range of

effective catalysts for the enantio- and diastereoselective versions, driven by the versatility of the b-amino

nitroalkane products as precursors to secondary amines and vic-diamines. Despite this broad effort, syn-

diastereoselective variants are exceedingly rare. We have discovered a subset of a-fluoro nitroalkane

additions that are characterized by an unusual crossover in diastereoselection, often delivering the

products with high selectivities. We report here a rigorous comparative analysis of non-fluorinated and

a-fluoro nitroalkanes in their additions to azomethines. Both homogeneous and heterogeneous catalysis

were applied to probe the possibility that this phenomenon might be more widely operative in the

enantioselective additions of fluorine-substituted carbon nucleophiles. A complete correlation within

four categories is described that uncovered a clear trend, while revealing a dramatic and distinct reversal

of diastereoselection that would normally go undetected.
Introduction

The addition of nitroalkanes to imine azomethines is oen
referred to as the aza-Henry or nitro-Mannich reaction (Scheme
1, eqn (1)). It has been successfully developed into a leading
method for the stereocontrolled synthesis of vic-diamines1

owing to the ease of subsequent nitro reduction (Scheme 1, eqn
as a source of enantioenriched b-
diamines (eqn (2)).
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(2)).2 The discovery of a wide array of Lewis acid and metal-free
chiral catalysts that accelerate the aza-Henry reaction has
greatly expanded the amine products readily accessed, in
particular diamine and secondary amine precursors to small
molecules with relevance to therapeutic development.3,4 Despite
these advances, nearly all aza-Henry reactions promoted by
chiral catalysts favor the anti-diastereomer.5,6 Simultaneous
observation of high syn-diastereoselection and high enantiose-
lection (up to 98% ee) has been achieved only once7 with a-alkyl
or a-aryl nitromethane derivatives, and twice8,9 with a-nitro
ester derivatives.10 The absence of general syn-selective aza-
Henry reactions reects a gap in our understanding of the
factors responsible for selectivity, while diminishing the reac-
tion's otherwise broad utility as a source of diamines for ther-
apeutic development and asymmetric synthesis.1

We have discovered an unusual reversal of diaster-
eoselectivity, favoring the syn-aza-Henry product, that arises
within a subset of a-uoro nitroalkane pronucleophiles. A
notable feature is that the reversal is mediated, but not deter-
mined by the catalyst, leading to the discovery of an example of
uorine-based diastereodivergence.11 This behavior is outlined
by amethodical investigation of this substrate control using aryl
and aliphatic aldimines, combined with aryl and aliphatic a-
uoro nitromethane derivatives. An underlying hierarchy has
been uncovered in these additions whereby uorine reverses
the inherent anti-selectivity of nitroalkane additions in cases
not including aryl nitromethanes. These nitronates, bearing
geminal aryl and uorine, remain unaffected when changing
from hydrogen to uorine at nitronate carbon, suggesting
a dominant directing effect provided by the aromatic ring. As
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Proposed classification system for catalyzed enantioselective
aza-Henry reactions studied (this work), highlighting the substituent-
dependence of syn-selectivity.

Scheme 2 The aza-Henry reaction: typical anti-selective reactions.
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a result of our observations, a classication system (Fig. 1, Types
I–IV) is proposed by which to organize these behaviors, one that
might be adaptable to future studies.
Results

We recently reported the catalyzed addition of a-uoro nitro-
alkanes to N-Boc aldimines using chiral bis(amidine) [BAM]
catalyst 1 (Scheme 2, eqn (3)).12 The inclusion of uorine in the
nitroalkane pronucleophile attenuated the overall rate relative
to its nonuorinated counterpart, but otherwise provided for
the synthesis of b-uoro amino stilbenes (aer reduction).13–16

The relative conguration of the b-amino nitroalkanes (Fig. 1,
Type I)17 was assigned by X-ray diffractometry, establishing that
the uorine's effect on rate blunted but did not reverse anti-
selectivity in this case. Other cases exhibited similarly high
selectivity, encouraging a tentative assignment of conguration
by analogy.

During our pursuit of applications requiring Type IV addi-
tions, we continued to observe high diastereo- and enantiose-
lectivity. These studies provided an additional opportunity to
rigorously determine absolute and relative stereochemistry by
X-ray diffraction. In doing so, we made the surprising discovery
that selectivity favored the syn-b-amino-a-uoro nitroalkane.
This led us to launch a comprehensive study of each category of
aza-Henry, with the objective to identify the control element(s)
leading to syn-selectivity, and ultimately an understanding of
this phenomenon of diastereodivergence.18

Standard conditions were established using 3b, phenyl
nitromethane (4a), and 1 as the catalyst (Table 1, entry 1). As
previously reported, the product (6a) is produced with high anti-
selectivity (>20 : 1 dr) and 78% ee. The use of heterogeneous
catalysis was examined, specically phase transfer catalysis
© 2022 The Author(s). Published by the Royal Society of Chemistry
(PTC) with N-benzyl quininium chloride (2, 12 mol%) and
cesium hydroxide. When this protocol was applied to the a-
amido sulfone precursor to N-Boc imine, the addition product
was formed with high diastereoselectivity, but low enantiose-
lection for the major (anti) diastereomer (Table 1, entry 2: 6a,
15 : 1 dr, 39% ee). Catalysts 1 (homogeneous) and 2 (heteroge-
neous) not only exhibited similar behavior with phenyl nitro-
methane, but also a-uoro phenyl nitromethane (4b) (Table 1,
entries 3–4). This suggested a robust correlation between
nitronate-azomethine orientation during activation by catalyst,
and relative insensitivity of this stereochemistry-determining
arrangement to the presence of uorine at a reacting carbon.
It should be noted, however, that uorine notably slowed the
aza-Henry additions relative to those of non-uorinated aryl
nitromethanes. This is a phenomenon already noted for BAM
catalyst 1 (including the effects of ligand protonation), consis-
tent with a combination of rate-limiting nitroalkane deproto-
nation, and the higher effective pKa exhibited by a-
uoronitroalkanes.19 In summary, homogeneous catalyst 1 is
superior to heterogeneous catalyst 2 in Type I additions, but
both favor anti-diastereoselectivity, and the same absolute
conguration for the major and minor diastereomers.

We next investigated an alkyl aldimine electrophile (Table 1,
entries 5–8) with the same pair of nitroalkanes (4a–b), observing
varying levels of selectivity. Catalysts 1 and 2 favored the same
relative and absolute congurations for the products of these
reactions. The level of diastereoselection during formation of 6c
was highest using BAM catalysis (Table 1, entry 5 vs. entry 6), but
enantioselection was higher using phase transfer catalyst (PTC)
2 (89% ee vs. 60% ee). Extending this examination to a-uo-
ronitroalkane 4b conversion to 6d, both catalysts 1 and 2
featured anti-selective additions for a-uoro aryl nitromethane
additions to aliphatic aldimines. For example, a-uoro phenyl
nitromethane provided the b-amino-a-uoro-nitroalkane in
5.2 : 1 anti : syn, 83% ee (Table 1, entry 7). Temperature in this
Chem. Sci., 2022, 13, 2614–2623 | 2615
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Table 1 Catalyzed aza-Henry reactions varying aromatic/aliphatic substituents of azomethine and nitronate/fluoronitronate (Types I–IV)a

Entry Type

R1

Conditions R2 H/F 4 / 6 Temp. (�C) Catalyst anti : synb

eeb (%) Yieldc (%)

3/30 anti syn NMR Isol

1 I Ph (a) B Ph H 4a/6a �55 1 >20 : 1 78 99 79 —
2 I Ph (a) C Ph H 4a/6a �50 2 15 : 1 39 99 30 —
3d I Ph (a) B Ph F 4b/6b 0 1$HNTf2 3.5 : 1 94 84 — 88
4 I Ph (a) C Ph F 4b/6b �55 2 4.2 : 1 52 31 60 —
5 II CH2]CHCH2CH2 (b) A Ph H 4a/6c �55 1 >20 : 1 60 99 35 35
6 II CH2]CHCH2CH2 (b) C Ph H 4a/6c �35 2 11 : 1 89 99 33 31
7e II CH2]CHCH2CH2 (b) A Ph F 4b/6d �20 1$HNTf2 5.2 : 1 83 99 — 53
8 II CH2]CHCH2CH2 (b) C Ph F 4b/6d �35 2 2.7 : 1 91 93 — 43
9 III pClC6H4 (c) B PhCH2CH2 H 4c/6e �20 1$HNTf2 20 : 1 87 51 — 49
10 III pClC6H4 (c) C PhCH2CH2 H 4c/6e �55 2 3 : 1 33 7 86 —
11d III pClC6H4 (c) B PhCH2CH2 F 4d/6f 25 1$HNTf2 1 : 5.0 99 93 — 85
12 III pClC6H4 (c) C PhCH2CH2 F 4d/6f �35 2 1 : 2.5 24 60 89 79
13 IV tBuCH2 (d) A PhCH2CH2 H 4c/6g �55 1 1 : 1 20 11 — 21
14 IV tBuCH2 (d) C PhCH2CH2 H 4c/6g �55 2 >20 : 1 99 — 94 90
15 IV tBuCH2 (d) A PhCH2CH2 F 4d/6h 0 1$HNTf2 1 : 2.4 81 80 47 —
16 IV tBuCH2 (d) C PhCH2CH2 F 4d/6h �35 2 1 : 7.2 76 91 — 84

a Conditions: (A) the a-amido sulfone 30 is treated with Cs2CO3 in toluene to form imine 3. Aer ltration, this solution is used directly in the aza-
Henry reaction which is carried out in toluene (0.1 M) using the nitro- or uoronitroalkane (1.2 equiv.) and 6,7(MeO)2PBAM (1) or
6,7(MeO)2PBAM$HNTf2 (1$HNTf2, 10 mol%) for 24 hours. (B) Using 3 (neat, preformed from 30), the aza-Henry reaction is run in dry toluene (0.1
M) under argon using the nitro- or uoronitroalkane (1.2 equiv.) with 1 or 1$HNTf2. (C) Reaction run in dry toluene (0.1 M) under argon using
the nitro- or uoronitroalkane (4.5 equiv.), N-benzylquininium chloride (2, 12 mol%), and CsOH$H2O (1.3 equiv.) for 48–72 hours. See ESI for
complete details. b Diastereomeric ratios measured by 1H NMR analysis of the crude reaction mixture. Enantiomeric excess determined by
HPLC using a chiral stationary phase. c Yields over 2 steps (from a-amido sulfone). NMR: yield measured using an internal standard when 6 is
present at high apparent purity in crude reaction mixture. Isol: isolated yield obtained when impurities are evident alongside 6 in crude
reaction mixture. Selected cases analyzed using both methods for comparison. d Data from ref. 12. e 20 mol% catalyst. Using 10 mol% catalyst
provides 6d with 5.8 : 1 dr, 87/>99% ee, and 43% yield.
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and later examples was most oen selected to optimize
conversion and yield for specic cases, while seeking the lowest
functional temperature to favor higher selectivity. Also of note,
our desire for rigorous assignment of the major stereoisomer
for the non-uorinated adduct went unfullled, since crystal-
line anti-6c formed only thin, feathery needles. As a result, the
assignment was made by analogy to a similar case examined by
Duan.26 Absolute and relative stereochemistry for the major
isomer of the uorinated substrate was assigned by X-ray
diffraction (anti-6d, Fig. 2).

Within Type III additions, non-uorinated alkyl-substituted
nitronates provided addition products with aryl aldimines
with good selectivity (20 : 1 dr, 87% ee) when using 1$HNTf2
(Table 1, entry 9). Dixon20 and Palomo21a have independently
assigned anti-selectivity to this type of addition. In the forma-
tion of 6e from 4c, catalyst 2 was not competitive, providing low
diastereoselection (3 : 1) and enantioselection (33% ee, Table 1,
entry 10) relative to BAM catalysis. Despite the low selectivity,
2616 | Chem. Sci., 2022, 13, 2614–2623
both catalysts favor the same stereoisomer. In Type III cases
involving a-uoro aliphatic nitroalkane additions (4d) and
aromatic aldimine electrophiles, good diastereo- and enantio-
selectivity (5.0 : 1 dr, 99% ee: Table 1, entry 11) was observed.
This behavior followed the trends outlined for all of the addi-
tions described to this point. Fortunately, we did not rely on
analogy for stereochemical assignment since it would have
predicted conservation of anti-selectivity based on all Type I/II
additions, and non-uorinated Type III additions. We instead
sought rigorous stereochemical assignment by X-ray diffraction.
Single crystals of the major diastereomer for 6f revealed its syn-
relationship (Fig. 2). Comparison of homo- and heterogeneous
catalysis conrmed again that both methods favored the same
relative and absolute stereochemistry in the product, albeit with
low dr and ee for 2 (Table 1, entry 12).

For Type IV additions, we selected 3-phenyl-1-nitropropane
for evaluation in both hetero- and homogeneous catalyst
protocols, delivering the product of addition to 3d with high
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 X-Ray analysisa for major (relative and absolute) stereoisomer formed in experiments detailed by Table 1, and categorization of aza-Henry
reactions by the type (aryl vs. alkyl) of the azomethine electrophile substituent, and the nitromethane substitutent(s). a ORTEPs shown at 50%
probability.
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selectivity only when using 2 (Table 1, entries 13–14). A strength
of phase transfer catalysis is the pairing of rates for imine
formation and consumption, a feature that is particularly
impactful when the imine can tautomerize to the N-acyl
enamide. In this comparison, catalyst 1 provided 6g in low yield
and with minimal stereoselection. However, PTC 2 delivered 6g
with exceptional selectivity (>20 : 1 dr, 99% ee) and yield (Table
1, entry 14). Rigorous assignment of anti-selectivity for this
reaction was made by X-ray diffraction analysis of the major
product, anti-6g.

Our examination of the corresponding Type IV additions of
a-uoronitroalkane using either homogeneous BAM catalysis
(1$HNTf2) or heterogeneous catalysis (2) revealed similar
selectivity trends again, with the former providing product with
low diastereoselection (2.4 : 1) and moderate enantioselection
(81% ee) at 0 �C. Catalyst 2 led to the same major diastereomer
with high selectivity (7.2 : 1), and moderate enantioselection
(76% ee) at �35 �C (Table 1, entry 16). In this case, both the
major and minor diastereomers of 6h formed good quality
single crystals that allowed the major to be assigned as syn-6h
and the minor to be assigned as anti-6h. This also allowed us to
further conrm that the stereochemistry at the azomethine
carbon is conserved. Once again, the addition of alkyl-
substituted a-uoro nitronates displayed a reversal of diaster-
eoselection, favoring syn-selectivity. Notably, this behavior
stands in contrast to the anti-selectivity observed with non-
uorinated alkyl-substituted nitronates 4c.
Discussion

An important aspect of this study is the dedicated effort to
rigorously assign relative and absolute conguration for each
example while placing it in the context of the same efforts by
© 2022 The Author(s). Published by the Royal Society of Chemistry
others. In Type I (Ar/Ar) additions, aryl nitromethanes undergo
diastereo- and enantioselective addition to N-Boc benzaldi-
mines using bis(amidine) [BAM] catalysis, providing anti-addi-
tion products with high yield and selectivity (Scheme 2, eqn (3),
5a). In addition to assignment of the favored stereoisomer by X-
ray diffraction (R1]3-Br-4-MeOC6H3, R2]C6H5), a key analogue
(R1]R2]4-ClC6H4) was converted to the p53/MDM2 inhibitor
Nutlin-3a,14b and its potency recapitulated in vitro.14,22 Advances
for Type I additions have been made by others (Fig. 3). Ooi
developed a chiral ammonium betaine (C1) that further
improves the selectivity of this addition, providing the Type I
product (Ph/Ph) in 97% ee. Ooi's investigation of aryl nitro-
methane, and a-vinyl-a-aryl-nitromethane addition to imines
exhibited highly conserved anti-selectivity.23,24 Kozlowski iden-
tied cinchonidinium acetate (C3$HOAc) as an effective
homogeneous catalyst for Type I product (Ph/tBuC6H4: 97 : 3
anti : syn, 70% ee).25 Finally, Duan used a urea/tetralkyl
ammonium bifunctional catalyst (C4) to provide 6a (Ph/Ph) in
99 : 1 anti : syn and 99% ee.26,27

In Type II (Alkyl/Ar) additions, the reaction of aryl nitronates
with alkyl aldimines have been established as anti-selective.
Aliphatic N-Boc aldimines are best addressed by phase transfer-
catalysis since the formation of N-Boc enamide by tautomeri-
zation is minimized.21,28 Duan extended the catalyst effective for
Type I additions to a single example involving an aliphatic
aldimine, which provided the product in 91% yield (PhCH2CH2/
Ph: 94 : 6 dr, 97% ee). The stereochemical assignment of this
example was made by analogy to the associated Type I cases,
specically 6a.

Our assignment of product conguration (vide supra)
conrmed that Type II additions exhibit robust anti-selectivity
regardless of uorine substitution of the intermediate aryl
nitronate. Importantly, these results also establish that this
Chem. Sci., 2022, 13, 2614–2623 | 2617
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Fig. 3 The aza-Henry reaction of aryl nitromethanes to aryl aldimines: anti-selectivity across diverse catalysts.

Fig. 4 Workingmodels (i.e., L¼ 1) to identify dominant effects present
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behavior is independent of catalyst type (homo- vs.
heterogeneous).

Type III additions are undoubtedly the most studied cases,
thereby providing a greater pool of catalysts for comparison.
Among these, the catalysts 1$HNTf2 and 2 have been shown to
be highly effective. However, the high degree of consistency
exhibited by Type I–II additions using non-uorinated and
uorinated nitroalkanes 4 did not accurately forecast the
behaviors to be uncovered by Type III additions.

Limited literature precedent exists for the favored stereo-
isomer in additions of alkyl-substituted nitronates to aliphatic
aldimines (Type IV). This includes the early examples (2005) by
Palomo citing anti-selectivity when drawing analogy to Type III
additions. This Type IV selectivity was more rigorously estab-
lished in 2008 using X-ray diffraction.21b Shibasaki's singular
syn-selective Type IV additions featured a Cu(II)/Sm(III) protocol
for nitroethane addition to an aliphatic aldimine (65% yield,
20 : 1 dr, 80% ee), and this product was converted to nem-
onapride, an antipsychotic agent.7 In other cases, Shibasaki's
bimetallic catalyst provided the typical anti-selectivity with good
enantioselection.29 Anderson rigorously assigned silyl nitronate
addition products within the Type III class for which a cop-
per(II)–bis(oxazoline) system provided high dr/ee. Analogy was
then used to assign those belonging to the Type IV class, which
included two cases: the product from cyclohexanal N-PMP
imine (88% yield, >15 : 1 dr, 87% ee) and hexanal imine (88%
yield, 1 : 1 dr, 86% ee).30 Finally, Duan used a phase transfer
catalyst equipped with hydrogen bonding ability to report
a single example: the addition of nitroethane to the cyclohexyl
carboxaldehyde imine, with up to 99 : 1 dr, 97% ee. There is
minimal literature related to the effect of uorine on the dia-
stereo- and enantioselective addition of nitroalkanes bearing
alternative activating groups.31–34
2618 | Chem. Sci., 2022, 13, 2614–2623
To summarize, across Types I–IV, anti-diastereoselection is
observed when using non-uorinated nitroalkanes. This is
observed regardless of catalyst (1 or 2), reaffirming reports with
PTC,21 BAM,35 and a wide range of other catalysts4,36–38with alkyl-
substituted nitronates, and PTC24–26 or BAM14 catalysts applied
to aryl-substituted nitronates. Departing from this behavior39

for enantioselective aza-Henry reactions, Shibasaki's report is
a standout. It is the most successful syn-diastereo- and enan-
tioselective reaction to-date: using a mixed Cu(II)/Sm(III)
complex, excellent syn-diastereoselection was achieved, with
good enantioselection (43–83% ee). Aliphatic aldimines were
less successful, reaching as high as 81% ee, and the scope was
also limited to three linear aldimines.7 The syn-selectivity in that
work is attributed to reagent control by formation of a samar-
ium(III) nitronate and copper(II)-activated Boc-imine supported
simultaneously by the same chiral ligand.

Two basic stereochemistry-determining arrangements of
azomethine and nitronate are summarized in Fig. 4: pre-anti (7
or 9) and pre-syn (8 or 10). Regardless of catalyst deployed in
experiments here, the azomethine Si face is favored. This is
evident from the conguration at the aminomethyl carbon for
during C–C bond formation as a function of nitronate substituent
combination (aryl/alkyl, H/F).

© 2022 The Author(s). Published by the Royal Society of Chemistry
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both diastereomers, indicating that the azomethine-catalyst
binding is relatively conserved (this was further conrmed in
this work by X-ray analysis, see ESI† for details). Therefore, each
Newman projection in Fig. 4 illustrates nitronate approach to
the azomethine Si face. A second guiding principle is the
bifunctional activation of azomethine and nitronate which
favors a synclinal arrangement of azomethine nitrogen and
nitronate-NO2 units. This feature has been supported by Dud-
ding's analysis,40,41 it is consistent with the bifunctional char-
acter of BAM catalysis, and it is also invoked elsewhere.7,21b Type
I–II aza-Henry reactions are anti-selective and insensitive to the
presence of uorine (R1]H vs. F). The arrangement in Fig. 4A
provides for the rst two factors, and placement of the aromatic
ring of the nitronate between the smaller aldimine-hydrogen
and Ar/Alkyl substituents (i.e. R2) of the azomethine predicts
anti-selectivity on purely steric grounds. The cases of alkyl-
substituted nitronates are more nuanced (Fig. 4B), with the
non-uorinated nitronate (R1]H) favoring anti-selectivity for
the same reasons as listed above.

Fluorine-substituted nitronates favor syn-selectivity (Fig. 4B)
when geminally-substituted with an alkyl substituent, but not
aryl. Although uorine is highly electronegative and a weak
hydrogen bond acceptor, the consistent azomethine face-
selectivity suggests that the electrostatically-driven hydrogen
bonding between ligand and azomethine is not dramatically
affected by the presence of uorine in the nitroalkane.42

Contemporary models advancing the gauche effect for uo-
rine43 align with anti-selectivity, wherein iminium and uorine
are gauche (Fig. 4) to allow sCC / s*

CFsCF* overlap involving
the aldimine R2–carbon bond.44 While this reasoning is
consistent with Type I–II (R1]F) additions, it should also apply
to Type III–IV additions (R1]F), but these lead to syn-selectivity
instead.

The origin of diastereodivergence may emanate from
a secondary interaction between the iminium and the nitronate
substituent in an anti relationship in the transition state,
favoring Ar > F > alkyl. We speculated that the extensive litera-
ture describing the Diels–Alder reaction might harbor uorine-
based diastereodivergence, particularly in cases where directing
groups compete in a thermal reaction. Indeed, the competition
between phenyl and uorine for endo-positioning in Diels–Alder
reactions favors slightly (2–3 : 1) endo-uorine with an electron-
rich benzoisofuran and a-uoro styrene.45 Moreover, (E)-b-u-
oro styrene is also slightly endo-uorine selective, while (Z)-b-
uoro styrene produces only endo-product (both Ph and F are
positioned endo).46 The substituent effect of uorine (vs.
hydrogen) is perhaps most pronounced in enantioselective
catalysis with a-uoro enones and esters. In these cases, uo-
rine overrides ketone and ester carbonyl for endo-positioning by
3 : 1.47 Computational methods have been applied to thermal
and Lewis acid-promoted Diels–Alder cycloadditions of cyclo-
pentadiene with enones, leading to the conclusion that desta-
bilization of the endo-pathway for 3-uorobutenone is primarily
responsible for its endo-uorine (exo-C]O) selectivity.48 Overall,
these substituent effects follow a hierarchy F > Ph/carbonyl > H
consistent across cyclopentadiene and diphenyl isobenzofuran.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Unlike the thermal Diels–Alder reactions where uorine
effected diastereodivergence when competitive with both
phenyl (aryl) and carbonyl geminal substituents, the hierarchy
here is Ar > F > alkyl. Of course, the transition states for nitro-
nate additions to imines with catalysis are quite different, and
the role of uorine would be expected to be more pronounced
than an alkyl group in the transition state. The unusual
behavior lies in the contrasting effects when phenyl nitro-
methane derivatives are involved. We speculate that in these
cases the electronic nature of an aryl ring prevails, perhaps
through a secondary interaction between anti-aryl or anti-F and
iminep* orbitals: pAr/p*-imine > nF/p*-imine > sC-alkyl/

p*-imine.

Conclusion

Despite extensive investigation of the aza-Henry reaction using
a broad range of chiral catalysts, highly enantio- and syn-
selective variations are rare.3 Moreover, with one exception, the
only known examples require an a-nitro ester.8–10 Only one syn-
selective aza-Henry of a nitroalkane without an additional
activating group has been reported, with enantioselection as
high as 98%.7 A thorough study of catalyzed nitronate additions
to N-Boc imines derived from aliphatic and aromatic aldehydes
revealed exceptions to the otherwise common nding of anti-
selectivity that is broadly observed in enantioselective, catalyzed
aza-Henry reactions. This selectivity is particularly character-
istic of terminal nitroalkanes lacking activating groups, and we
replicated and extended this trend, using X-ray diffraction to
rigorously assign product stereochemistry when needed. The
exceptions were found among uorine-substituted nitronates,
but only those with an aliphatic substituent. In cases where an
aromatic ring substituent was geminal to the C–F bond, anti-
selectivity prevailed. The uorine effect, and its compartmen-
talization into a subset of nitronates is unprecedented. We
speculate that a hierarchy of directing effects is responsible for
the selectivity, with the nitro group's position conserved among
Type I–IV, but a phenyl ring overriding the uorine's additional
effect in Type I–II additions. Remarkable aspects of this
discovery include the turnover in diastereoselection to syn-
selectivity simultaneous with high enantioselection, in some
cases setting it apart from prior highs established by others.7

That these trends are relatively independent of catalysis method
(hetero- vs. homogeneous) when using a-uoronitroalkane
pronucleophiles suggests that the behavior may be more
generally observed. Examples of diastereodivergence associated
with substrate control, using a single catalyst, are
increasing.49–51 As solutions to the stereocontrolled aza-Henry
reaction increase, so will their impact on concise preparations
of small molecules in drug development, and innovative entry
to peptides based solely on catalytic, enantioselective
methods.52

Data availability

All experimental and characterization data in this article are
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6d, syn-6f, anti-6g, anti-6h, and syn-6h have been deposited in
the Cambridge Crystallographic Data Centre (CCDC) under
accession numbers CCDC 2118052–2118056.
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