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ural compounds against
oncogenic RET tyrosine kinase using
pharmacoinformatic approaches for cancer
therapeutics†

Shraddha Parate, a Vikas Kumar, b Jong Chan Hong*a and Keun Woo Lee *b

Rearranged during transfection (RET) tyrosine kinase is a transmembrane receptor tyrosine kinase

regulating vital aspects of cellular proliferation, differentiation, and survival. An outstanding challenge in

designing protein kinase inhibitors is due to the development of drug resistance. The “gain of function”

mutations in the RET gate-keeper residue, Val804, confers resistance to the majority of known RET

inhibitors, including vandetanib. To curtail this resistance, researchers developed selpercatinib (LOXO-

292) against the RET gate-keeper mutant forms – V804M and V804L. In the present in silico

investigation, a receptor–ligand pharmacophore model was generated to identify small molecule

inhibitors effective for wild-type (WT) as well as mutant RET kinase variants. The generated model was

employed to screen 144 766 natural products (NPs) available in the ZINC database and the retrieved NPs

were filtered for their drug-likeness. The resulting 2696 drug-like NPs were subjected to molecular

docking with the RET WT kinase domain and a total of 27 molecules displayed better dock scores than

the reference inhibitors – vandetanib and selpercatinib. From 27 NPs, an aggregate of 12 compounds

demonstrated better binding free energy (BFE) scores than the reference inhibitors, towards RET. Thus,

the 12 NPs were also subjected to docking, simulation, and BFE estimation towards the constructed

gate-keeper RET mutant structures. The BFE calculations revealed 3 hits with better BFE scores than the

reference inhibitors towards WT, V804M, and V804L RET variants. Thus, the scaffolds of hit compounds

presented in this study could act as potent RET inhibitors and further provide insights for drug

optimization targeting aberrant activation of RET signaling, specifically the mutation of gate-keeper

residue – Val804.
1. Introduction

The RET proto-oncogene was originally discovered in NIH3T3
cells when Takahashi et al. in 1985 exogenously transfected
a DNA sequence from human lymphoma cells into murine
NIH3T3 broblasts.1 The gene was found to be rearranged
during this process, which led to its name ‘REarranged during
Transfection’, abbreviated as RET.2 The human RET gene was
subsequently mapped to chromosome 10 (10q11.2) by Ishizaka
et al.3 The encoded RET glycoprotein is a receptor tyrosine
kinase (RTK) comprising three domains including the extra-
cellular domain, the hydrophobic transmembrane domain and
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the intracellular tyrosine kinase domain.4 The extracellular RET
domain consists of three parts encompassing the four cadherin-
like domains (CLDs) of 110 residues each, one Ca2+ binding site
between CLD2 and CLD3 and a cysteine-rich domain of 120
residues connecting the transmembrane domain.2,4 The intra-
cellular RET section encompasses the juxtamembrane segment
of 50 residues, the tyrosine kinase domain and a carboxy (C)-
terminal tail of 100 residues long. The ‘long’ RET isoform
comprises of 51 unique C-terminal residues (RET51), while the
‘short’ RET isoform consists of 9 C-terminal residues (RET9).
The RTK RET plays an essential role in signaling pathways for
the survival, development and maintenance of neuronal pop-
ulations present in the kidney, and sympathetic, para-
sympathetic and enteric nervous systems.5,6 Ligands of the glial-
derived neurotrophic factor (GDNF) family activates RET kinase
in unication with the GDNF family receptor a1–4 (GFRa1–4) by
the trans-phosphorylation phenomenon.7 The stability, matu-
ration and translocation at the plasma membrane of RET
protein is disrupted by mutations within the extracellular RET
domain.8,9 Correspondingly, loss of kinase activity is associated
© 2022 The Author(s). Published by the Royal Society of Chemistry
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with mutations within the intracellular kinase domain leading
to aberrant kinase signaling.7 Oncogenic activation of RET can
also occur via chromosomal rearrangements producing hybrid
proteins that combines RET kinase domain with another
protein containing a dimerization domain.10

The abnormal expression of RET has been implicated in
several human disorders including Hirschsprung's disease,11–13

multiple endocrine neoplasias type 2A (MEN2A) and 2B
(MEN2B),12,14,15 non-small cell lung cancer (NSCLC) as well as
papillary (PTC)12,16 and medullary thyroid cancers (MTC).12,17

Oncogenic RET activity is also observed in numerous cancer
types such as prostate,18 colorectal,19 pancreatic,20 breast21 and
glioblastomas.22 Therefore, RET RTK is considered as a quin-
tessential therapeutic target for the development of inhibitors
directed towards cancerous ailments. The FDA (Food and Drug
Administration) and EMA (European Medicines Agency) has
granted approval for the multikinase inhibitors – vandetanib
and cabozantinib for the treatment of RET-positive MTC. Van-
detanib works by blocking the aberrant activity of multiple
kinases including RET, VEGFRs and EGFR, while cabozantinib
causes the concurrent blockade of VEGFRs, RET, MET and c-
KIT.6 Additionally, lenvatinib and sorafenib were also granted
FDA approval for differentiated thyroid cancers.23 However,
each of these drugs are multikinase inhibitors and are not
selective towards RET-driven cancers. Moreover, the use of
multikinase inhibitors is linked with mild to heavy toxicities
resulting from inhibition of other kinases.24,25 Besides the
adverse effects arising frommodulation of other target proteins,
several inhibitors have demonstrated to be ineffective against
mutations in the gate-keeper residues. The mutation in the
gate-keeper residue Val804 (V804) of RET, particularly the
V804M/L mutations, confers resistance to several inhibitors.
Hence, there is a need for identication of novel and selective
RET inhibitors targeting the aforementioned mutations.
Recently, LOXO-292 (RETEVMO, selpercatinib), developed by
Loxo oncology was granted approval by FDA inMay, 2020 for the
treatment of RET fusion-positive thyroid cancer, RET fusion
positive NSCLC and RET-mutant MTC.26 Selpercatinib demon-
strated potency against both wild-type (WT) RET as well as RET
V804M/L mutations in cellular assays.27 Furthermore, LOXO-
292 is highly selective against RET-rearranged tumors.25

Therefore, the development of selective RET inhibitors target-
ing the gate-keeper mutations is a major research goal.

The above-mentioned objectives prompted us to identify
selective RET inhibitors targeted towards the WT and RET gate-
keeper mutations, V804M and V804L, similar to selpercatinib.
Accordingly, we have performed an in silico investigation via
developing a receptor-based pharmacophore model by adopting
the RET interaction with a pyrazolopyrimidine inhibitor PP1, as
a template structure. The developed model was then employed
to virtually screen the natural compounds embedded in the
ZINC database. Subsequently, the mapped natural compounds
were ltered via Lipinski's, Veber's and pharmacokinetic
properties for their drug-likeness. The drug-like natural mole-
cules thereby arising from the above step were subjected to
molecular docking with the RET protein kinase domain and the
compounds demonstrating higher docking scores than
© 2022 The Author(s). Published by the Royal Society of Chemistry
selpercatinib were chosen. The selected natural molecules
along with selpercatinib were checked for their stability within
the RET kinase domain catalytic pocket for a period of 20 ns via
molecular dynamics simulations. Additionally, the compounds
were also evaluated on the basis of their binding affinities
towards the RET RTK. The compounds exhibiting affinities
similar or better to that seen for selpercatinib–RET interaction
were further subjected to docking with the RET mutant struc-
tures – V804M and V804L. The compounds demonstrating
binding affinities with WT as well as mutant structures were
thus considered as hits and their interactions within the RET
catalytic pocket were observed and reported in our study. The
conrmed nal hits were regarded as potential RET kinase
inhibitors possessing potent scaffolds targeting the WT as well
as gate-keeper mutations.
2. Materials and methods
2.1 Generation of receptor–ligand pharmacophore model

The generation of a receptor–ligand (structure-based) pharma-
cophore model relies on the catalytically active site of a protein
and its interaction with the bound co-crystallized ligand.28 The
knowledge acquired from the model aids in identication of
essential pharmacophoric features required for a protein's
inhibition.29 The crystal structure of RET tyrosine kinase com-
plexed with a pyrazolopyrimidine inhibitor, PP1 (1-tert-butyl-3-
p-tolyl-1H-pyrazolo[3,4-d]pyrimidin-4-ylamine) (PDB ID: 2IVV)
was downloaded from Protein Data Bank (PDB) repository for
pharmacophore generation.30 Subsequently, the protein struc-
ture was prepared utilizing the Clean Protein module within
Discovery Studio (DS) v.2018, following which the Receptor–
Ligand Pharmacophore Generation tool was engaged for model
generation. By employing the exible tting method, the
module generates an ideal hypothesis with variable features on
the basis of six pre-dened feature collection set (hydrogen
bond acceptor (HBA), hydrogen bond donor (HBD), positive
ionizable (PI), ring aromatic (RA), negative ionizable (NI) and
hydrophobic (Hy)).31 Following feature identication, the model
is ranked and estimated on the basis of genetic function
approximation (GFA) method and its selectivity score is deter-
mined.32 The pharmacophore model generated from the above
step was escalated for consequent validation.
2.2 Decoy set validation of generated model

The pharmacophore validation step is carried out to evaluate
the capability of the generated model in differentiating between
active and decoy compounds. Accordingly, our generated
pharmacophore model was assessed by a well-established
method known as Güner–Henry (GH) approach, which is also
named as decoy set method. A dataset consisting of 330
compounds was prepared which comprised of 24 active RET
inhibitors reported in literature. The remaining compounds
were considered as inactive for RET or decoys. Following dataset
preparation, the Ligand Pharmacophore Mapping module in
DS was employed where the decoy set was screened by the
generated model. The GH approach thereby generates
RSC Adv., 2022, 12, 1194–1207 | 1195

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1RA07328A


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

y 
20

22
. D

ow
nl

oa
de

d 
on

 1
0/

5/
20

24
 1

:1
9:

24
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
a goodness of t (GF) score which ranges between 0 (null model)
and 1 (ideal model).28,33,34 The GF score is calculated on the basis
of below equation, where D stands for the dataset encompass-
ing active as well as inactive compounds, A represents the active
compounds within D, Ht denotes the hit molecules which are
retrieved by the generated pharmacophore model and Ha
represents the total number of active hit compounds acquired
by the model. The validation of the model was also checked via
the Receiver Operating Characteristic (ROC) curve and the
results were assessed on the basis of the area under the curve
(AUC). The value of AUC ranges from 0.0 to 1.0, where AUC value
0 to 0.5 denotes random chance of discrimination, 0.51 to 0.7
represents acceptable value range, 0.71 to 0.8 suggests a good
model, and AUC value 0.81 to 1.0 represents an excellent model.

GF ¼
�

Ha

4HtA

�
ð3AþHtÞ �

�
1� Ht�Ha

D� A

�

2.3 Virtual screening and drug-likeness ltering for ZINC
natural product (ZINC NP) database compounds

The three-dimensional (3D) database of ZINC natural products
(NP) was downloaded and prepared in DS, consisting of 144 766
compounds. The Ligand Pharmacophore Mapping module
employed for validation of the generated model was also used to
screen the natural compounds available in ZINC database. The
compounds which mapped the features of our model were
retained for further analysis. The mapped compounds acquired
from the screening process were ltered by three consecutive
ltering criterions incorporating the Lipinski's rule of ve (Ro5),35

Veber's36 and ADMET (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) rules to obtain drug-like natural mole-
cules. The Veber's and Ro5 rules collectively suggest that
a potential drug-like molecule should demonstrate a total of#10
rotatable bonds, lipophilicity (log P) #5, molecular weight of
#500 kDa, hydrogen bond donor groups#5 and hydrogen bond
acceptor groups #10. The above ltering steps were carried out
by the Filter by Lipinski and Veber Rules module within DS. An
additional ltering was also done by the ADMET Descriptors tool
in DS which oversees that the potential drug-like compound will/
will not cross blood–brain barrier and does not demonstrate
CYP2D6 inhibition and hepatotoxicity. Additionally, the
compounds should demonstrate good intestinal absorption and
solubility. Thus, these acquired drug-like natural molecules
which mapped the features of our generated pharmacophore
model were taken forward for molecular docking.
2.4 Molecular docking of drug-like natural products with
RET tyrosine kinase

The process of molecular docking is performed to decipher the
bioactive binding poses and essential interaction of a given drug-
like molecule within the catalytic pocket of a macromolecular
protein target. The drug-like natural compounds assimilated
from the above-mentioned virtual screening process were
employed to dock with the RET kinase domain catalytic pocket
(PDB ID: 2IVV). The GOLD (Genetic Optimisation for Ligand
1196 | RSC Adv., 2022, 12, 1194–1207
Docking) automated docking soware with its default scoring
system (GoldScore and ChemScore) was used for our docking
study.37,38 The tness scoring function, GoldScore, is a force eld
based scoring function, operating on four components including
protein–ligand hydrogen bond energy, protein–ligand van der
Waals energy, ligand internal van der Waals energy, and ligand
intramolecular hydrogen bonding energy. The ChemScore is an
empirical scoring function and estimates the free energy of ligand
binding to macromolecular protein target. It incorporates simple
contact terms for estimating the free energy change, using lipo-
philic, metal–ligand binding contributions, ligand exibility, and
hydrogen bonding interactions. Accordingly, the crystal structure
downloaded from PDB was prepared and the binding site was
dened as a sphere of 8 Å using the Dene and Edit Binding Site
module in DS. In order to check the reliability of our docking
soware, the co-crystallized ligand (PP1) in PDB ID: 2IVV was re-
docked by providing the X, Y, and Z co-ordinates as 25.08, 7.02,
and 9.83, respectively. Following this reliability check, the drug-
like natural compounds were prepared with the Minimize
Ligands module in DS and consequently employed for docking.
The docking of drug-like natural molecules with the RET tyrosine
kinase domain was carried out with the same parameters as that
employed for docking of PP1. A total of 10 conformers were
generated per compound and the RET kinase inhibitors – van-
detanib and selpercatinib were considered as reference inhibi-
tors. The compounds which demonstrated higher GoldScores and
lower ChemScores than reference inhibitors were considered for
further analysis and their molecular interactions within the RET
kinase domain pocket were evaluated. The interactions of ob-
tained compounds were assessed with residues Leu730, Gly731,
Val738, Ala756, Lys758, Ile788, Leu802, Ile803, Val804, Glu805,
Tyr806, Ala807, Gly810, Leu881, Ser891, and Asp892 enclosing the
binding pocket of RET kinase domain. The chosen compounds
which demonstrated better dock scores than reference inhibitors
and key interactions with RET binding pocket residues were
rened under physiological conditions in the next step.
2.5 Molecular dynamics simulation of RET–ligand docking
interactions

The major limitation of molecular docking studies is that they fail
to consider the dynamics of protein–ligand interaction in real-
time. Additionally, the full consideration of target exibility is
lacking, leading to miss some molecules active for a specic
target.39 As compared to docking, molecular dynamics (MD)
simulations consider the exibility of protein targets in real-time
and are being widely used to rene the results obtained from
docking studies.40,41 In addition, simulation studies aid in under-
standing the interactions of a particular ligand within the binding
pocket at the atomic level. The complexes of ligands with RET,
acquired from the above docking process were regarded as initial
structures for MD simulations in GROningen MAchine for
Chemical Simulations (GROMACS) v2018.42 The RET protein
structure was parametrized by CHARMm27 forceeld,43 while the
parameters for docked ligands were obtained from SwissParam
tool.44 A three-point solventmodel (TIP3P) was used to immerse all
simulation systems and neutralized by addition of chloride ions.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Prior to equilibrating all systems, energy minimization by steepest
descent algorithm was carried out for 50 000 steps.45 Following
energy minimization, equilibration in NVT (constant number of
particles, volume, and temperature) ensemble and NPT (constant
number of particles, pressure, and temperature) ensemble was
performed, for 1000 ps each. The NVT ensemble equilibrates the
system using a V-rescale thermostat,46 while maintaining the
system temperature at 300 K. The NPT ensemble maintains the
system pressure at 1.0 bar by using the Parrinello–Rahman baro-
stat.47 Aer equilibration by NVT and NPT ensembles, MD simu-
lation of 20 ns was performed for all systems. The PME (Particle
Mesh Ewald) method handles the long-range electrostatic inter-
actions,48 while the bond constrains are monitored by LINCS
(LINear Constraint Solver) algorithm.49 The VMD (visual molecular
dynamics) molecular graphics programwas utilized for visualizing
simulation results.50 TheMD results for all systems were plotted in
terms of trajectory plots and interaction of ligands with RET kinase
domain was visualized in DS.
2.6 Binding free energy calculations of RET–ligand
interactions

The molecular docking approach predicts the favorable binding
disposition of a particular ligand within the protein's catalytic
pocket and is considered as gold standard in virtual screening
studies for identication of novel hits. However, docking
studies apply simple scoring functions for estimating the
protein–ligand binding affinities, thus leading to varying
results.51 Therefore, a more protable method for carrying out
reliable estimation of protein–ligand binding affinities is
commonly used for evaluating the MD trajectories. The popular
approach, namely, molecular mechanics Poisson–Boltzmann
surface area (MM/PBSA) combines the molecular mechanics
energies with surface area continuum solvation and computes
the free energy of binding of ligands with macromolecular
protein targets.52,53 The MM/PBSA binding affinity calculations
were used in previous studies with varying success to
rationalize/reproduce experimental ndings and also improve
the results obtained from virtual screening/docking strategies.52

Thus, the g_mmpbsa plugin tool embedded within GROMACS
was utilized to compute the binding affinities of compounds
with RET kinase.54 A total of 50 frames for RET–ligand MD
complexes were selected evenly for entire 20 ns and free energy
DGbind was computed according to the below equation. The
term Gcomplex represents the total free energy of protein–ligand
complex, while Gprotein and Gligand denotes the free energies of
individual components in the solvent when unbound.

DGbind ¼ Gcomplex � (Gprotein + Gligand)
2.7 Molecular docking, MD simulations, and binding
affinity evaluation of natural products with RET mutant
protein structures

The Val804 in the RET kinase domain confers resistance to the
established RET inhibitors, PP1 and vandetanib.55 In recent
© 2022 The Author(s). Published by the Royal Society of Chemistry
years, a new generation of selective RET inhibitors were iden-
tied and selpercatinib was approved by US FDA in 2020.25,26

Selpercatinib is effective for WT as well as for gate-keeper
resistance Val804 mutations (V804M/L).56 With the objective
of identifying similar compounds as selpercatinib which
demonstrate effectiveness for WT and gate-keeper mutations,
the hits acquired from MD simulation were subjected to
molecular docking with the gatekeeper mutant structures.
Accordingly, the Val804 residue was modelled via the Build and
Edit Protein tool to methionine and leucine for formation of
V804M and V804L mutant structures. Molecular docking and
dynamics simulation of hits was performed with the build
mutants and the generated trajectories were evaluated via MM/
PBSA analysis. The hits which showed similar or better binding
free energies than selpercatinib were retained and regarded as
being effective towards WT and gate-keeper mutations.

3. Results and discussion

Numerous computational techniques were applied for the
identication of potential RET tyrosine kinase inhibitors, the
schematic overview of our in silico investigation is summarized
(Fig. 1).

3.1 Receptor–ligand (structure-based) pharmacophore
model

A receptor–ligand pharmacophore model was generated from
the crystallographic structure of RET tyrosine kinase domain
complexed with a pyrazolopyrimidine inhibitor, PP1 (PDB ID:
2IVV). The model explored the key features of PP1 binding with
RET, which resulted in four pharmacophoric features, resulting
in one HBD and three Hy features with the selectivity score of
6.9375 (Table 1 and Fig. 2). The pharmacophore model indi-
cated that PP1 interacts with Glu805 and Ala807 via its HBD
feature, thereby forming hydrogen bonds. PP1 also interacts
with various surrounding residues including Leu730, Val738,
Ala756, Lys758, Val804, and Leu881 via the three generated Hy
features, thus forming hydrophobic bonds (Fig. 2B). Previous
literature by Kuei-Chung Shih et al. also reported four features
(HBA, Hy, HBA, and RA) essential for RET inhibition, developed
via ligand-based pharmacophore modeling.57 Therefore, the
generated model was taken forward to the next step of valida-
tion, to check its reliability.

3.2 Decoy set model validation

The pharmacophore model generated in the above step was
validated by a well-known method known as decoy set method.
In this method, an external dataset is screened, consisting of
active and decoy compounds, resulting in GF score ranging
from 0 to 1. Accordingly, from a dataset (D) of 330 compounds,
34 hits (Ht) were retrieved. Out of the total hits acquired, 24 (Ha)
inhibitors active for RET kinase, were obtained. The GF score
was thus calculated as 0.75, which is near the range value for an
ideal model (Table 2). From the ROC curve analysis, it was
observed that the model revealed reasonable quality with AUC
value of 0.804 and was demonstrated to be a good model
RSC Adv., 2022, 12, 1194–1207 | 1197
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Fig. 1 The workflow followed in the present in silico investigation for identification of potential RET inhibitors.

Table 1 Structure-based pharmacophore model summary with its
generated features

Pharmacophore
model

Number of
features

Feature
seta

Selectivity
score

Pharmacophore_01 4 HBD, Hy, Hy, Hy 6.9375

a HBD: hydrogen bond donor; Hy: hydrophobic.
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(Fig. S2†). This conrmed the robustness of our model in pre-
dicting active RET compounds from an external database.

3.3 Drug-like natural compounds derived by virtual
screening

Aer validation, the model was considered for virtual screening
of ZINC NP database comprising 144 766 compounds of natural
origin. Mapping of ZINC database resulted in 58 538
compounds which demonstrated the four features of our
pharmacophore model. These large number was further
reduced by applying three ltering rules as mentioned above.
The application of Lipinski's Ro5 and Veber's lter further
decreased the number to a total of 30 623 compounds. Subse-
quent application of ADMET lter resulted in 2696 natural
compounds. These 2696 natural products were escalated for
docking with the RET tyrosine kinase domain (Fig. 1).

3.4 Molecular docking of retrieved natural compounds with
RET tyrosine kinase domain

The drug-like natural (2696) compounds attained from the
virtual screening step were subjected to molecular docking with
the crystallographic structure of RET tyrosine kinase domain
Fig. 2 Receptor–ligand pharmacophore model. (A) Pharmacophore m
crystallized ligand, PP1 (PDB ID: 2IVV). (B) RET inhibitor, PP1 mapping w
features – HBD and Hy. (C) Interfeature distance between the features
phobic), and (D) interactions of PP1 with key residues of the RET binding

1198 | RSC Adv., 2022, 12, 1194–1207
(PDB ID: 2IVV). It was reported by Pietra et al. that the PP1
inhibitor in PDB ID: 2IVV enters a small cavity with its methyl-
phenyl moiety, thereby imposing the long Lys758 side chain to
shi its orientation.58 Thus, 2IVV is able to allocate larger
inhibitors like vandetanib and selpercatinib. Therefore, the
aforementioned crystallographic structure was taken into
consideration for our docking analysis. The robustness of
GOLD in re-docking the co-crystallized PP1 was evaluated,
resulting in root mean square deviation (RMSD) of 1.07 Å.
Moreover, the docked pose of PP1 overlaid perfectly with its
crystal structure conformation (Fig. S1†). As the RMSD was
observed to be in an acceptable range (<2 Å), the minimized
structures of 2696 ligands were further docked. In our docking
analysis, vandetanib and selpercatinib were regarded as refer-
ence inhibitors and compounds demonstrating better dock
scores than them were selected. Vandetanib demonstrated
a GoldScore of 55.87 and a ChemScore of �28.27, while sel-
percatinib displayed a GoldScore of 57.56 and a ChemScore of
�28.58. Using these scores as cut-off, a total of 39 natural
compounds showed better dock scores. The 39 natural mole-
cules were further scrutinized on the basis of their molecular
interactions with the catalytic residues in RET kinase domain.
Thus, an aggregate of 27 compounds from ZINC NP database
displayed better docking scores as well as favorable molecular
interactions with the residues contained within RET binding
pocket (Table S1†). The 27 compounds complexed with RET
were assessed via MD simulations.
3.5 Molecular dynamics simulation and free energy analysis

The 27 docked complexes chosen from docking analysis along
with the two complexes of reference inhibitors with RET were
odel generated at the catalytic site of RET tyrosine kinase with co-
ith essential residues of RET tyrosine kinase via key pharmacophoric
of the pharmacophore. HBD (hydrogen bond donor) and Hy (hydro-
pocket.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Decoy set validation of generated pharmacophore model with an external dataset composed of active RET inhibitors and decoy set
molecules

Sr. no. Parameters Values

1 Total number of compounds in the external dataset (D) 330
2 Total number of active compounds in the dataset (A) 24
3 Total number of hits retrieved by the model from the dataset (Ht) 34
4 Total number of active compounds in the hits retrieved (Ha) 24
5 % yield of active ((Ha/Ht) � 100) 70.58
6 % ratio of actives ((Ha/A) � 100) 100
7 False negatives (A � Ha) 0
8 False positives (Ht � Ha) 10
9 Goodness of t score (GF) 0.75

Table 3 The distribution of total binding free energy scores for reference inhibitors and potential natural products (NPs) from ZINC NP database
with wild-type (WT) RET tyrosine kinase

Compounds (ZINC ID)
van der Waals
(kJ mol�1)

Electrostatic
(kJ mol�1)

Polar solvation
(kJ mol�1)

SASA energy
(kJ mol�1)

Binding energy DGbind

(kJ mol�1)

NP1 (ZINC85879094) �176.08 � 11.448 �244.29 � 38.875 227.95 � 60.658 �19.96 � 0.992 �212.39 � 30.783
NP2 (ZINC02113839) �170.07 � 17.995 �391.46 � 22.996 385.77 � 26.354 �21.78 � 1.016 �197.55 � 21.070
NP3 (ZINC04030012) �179.09 � 16.288 �384.79 � 30.802 396.57 � 28.457 �22.38 � 0.825 �189.68 � 23.350
NP4 (ZINC08764543) �179.57 � 13.056 �222.18 � 20.335 235.07 � 20.435 �19.26 � 0.802 �185.95 � 20.154
NP5 (ZINC72325379) �123.55 � 12.977 �206.21 � 26.680 163.98 � 35.327 �16.22 � 1.218 �182.00 � 33.852
NP6 (ZINC12885019) �176.32 � 13.027 �277.69 � 27.172 306.81 � 29.105 �21.13 � 1.284 �168.33 � 28.872
NP7 (ZINC02123418) �204.19 � 20.333 �319.22 � 17.691 390.01 � 18.150 �24.00 � 1.304 �157.41 � 20.002
NP8 (ZINC02125740) �181.45 � 16.820 �258.52 � 42.232 305.56 � 52.888 �21.55 � 1.367 �155.95 � 33.849
NP9 (ZINC98364168) �130.86 � 19.920 �414.19 � 59.594 408.01 � 29.077 �17.47 � 0.857 �154.52 � 36.901
NP10 (ZINC02121773) �161.41 � 18.329 �318.35 � 48.122 366.09 � 41.275 �20.94 � 0.932 �134.62 � 27.939
NP11 (ZINC04030018) �165.05 � 14.246 �273.40 � 25.813 330.53 � 32.449 �21.10 � 1.228 �129.02 � 20.563
NP12 (ZINC02112951) �165.94 � 21.037 �330.54 � 28.769 392.17 � 25.582 �21.26 � 1.052 �125.58 � 33.252
Vandetanib �202.52 � 9.323 �43.11 � 8.860 149.45 � 14.798 �19.79 � 0.820 �115.97 � 17.341
Selpercatinib �259.28 � 12.103 �51.79 � 12.308 240.69 � 28.916 �25.38 � 1.125 �95.76 � 21.511
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taken as initial co-ordinates for MD simulations. In total, 29
systems were subjected to a production run of 20 ns each.
Following simulations, the binding affinity of each compound
towards RET was evaluated in terms of binding free energy
(BFE) values (Table S1†). The MM/PBSA calculation revealed
a BFE value of �115.97 kJ mol�1 for vandetanib, while selper-
catinib demonstrated a BFE value of �95.76 kJ mol�1. The BFE
values of reference inhibitors were taken as cut-off and a total of
12 ZINC NPs out of 27 NPs exhibited better BFE values (Table 3).
Table 4 The distribution of total binding free energy scores for reference
with RET gate-keeper mutant (V804M) structure

Compounds
(ZINC ID)

van der Waals
(kJ mol�1)

Electrostatic
(kJ mol�1)

NP7 (ZINC02123418) �164.02 � 28.023 �205.75 � 25.985
NP11 (ZINC04030018) �176.69 � 15.573 �205.64 � 25.947
NP3 (ZINC04030012) �172.86 � 12.306 �295.81 � 47.410
NP6 (ZINC12885019) �144.38 � 18.061 �284.10 � 56.409
NP2 (ZINC02113839) �189.69 � 17.155 �392.85 � 42.492
NP10 (ZINC02121773) �173.72 � 13.818 �204.05 � 37.850
Vandetanib �173.02 � 26.439 �6.61 � 8.749
Selpercatinib �265.56 � 10.514 �40.55 � 10.291

© 2022 The Author(s). Published by the Royal Society of Chemistry
Hence, their stability was assessed for the entire simulation
period.

3.6 Affinity analysis of NPs with the gate-keeper mutations
(V804M/L) in RET kinase domain via molecular docking and
dynamics simulations

The 12 NPs from ZINC database were also employed to dock
with the mutated kinase domains. Moreover, their BFE values
towards the gate-keeper mutations were further computed by
inhibitors and potential natural products (NPs) from ZINC NP database

Polar solvation
(kJ mol�1)

SASA energy
(kJ mol�1)

Binding energy DGbind

(kJ mol�1)

155.52 � 48.195 �18.19 � 2.448 �232.44 � 31.621
173.60 � 48.316 �19.65 � 1.865 �228.39 � 29.790
268.00 � 65.907 �21.49 � 1.279 �222.16 � 48.294
257.10 � 53.858 �18.94 � 1.496 �190.33 � 32.931
427.15 � 42.676 �22.28 � 0.653 �177.67 � 25.168
228.05 � 53.142 �20.46 � 1.170 �170.17 � 31.811
116.97 � 26.423 �19.34 � 2.967 �82.01 � 17.181
228.01 � 25.624 �25.44 � 0.955 �103.53 � 28.664
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Table 5 The distribution of total binding free energy scores for reference inhibitors and potential hits from ZINC natural product (NP) database
with RET gate-keeper mutant (V804L) structure

Compounds/hits
(ZINC ID)

van der Waals
(kJ mol�1)

Electrostatic
(kJ mol�1)

Polar solvation
(kJ mol�1)

SASA energy
(kJ mol�1)

Binding energy DGbind

(kJ mol�1)

NP7/Hit1 (ZINC02123418) �201.80 � 12.964 �211.89 � 30.665 243.09 � 47.563 �23.71 � 1.356 �194.31 � 32.373
NP2/Hit2 (ZINC02113839) �166.66 � 14.315 �211.89 � 27.958 225.66 � 43.924 �19.08 � 1.013 �171.98 � 27.358
NP3/Hit3 (ZINC04030012) �175.59 � 11.659 �307.58 � 34.392 358.97 � 32.033 �22.20 � 0.841 �146.40 � 19.385
Vandetanib �168.00 � 20.959 �17.96 � 16.256 111.07 � 41.212 �18.46 � 2.340 �93.36 � 22.040
Selpercatinib �258.30 � 11.203 �37.23 � 12.001 214.54 � 31.239 �24.83 � 0.895 �105.83 � 25.589

Fig. 3 The binding mode of reference inhibitors (vandetanib and selpercatinib) and 12 acquired natural products (NPs) with wild-type (WT) RET
kinase domain and molecular interactions with key residues. Hydrogen bonds are shown as green dashed lines.
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Fig. 4 The binding mode of 6 acquired natural products (NPs) with gate-keeper (V804M) mutant RET kinase domain and molecular interactions
with key residues. Hydrogen bonds are shown as green dashed lines.
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MM/PBSA methodology. The calculation revealed a BFE value of
�82.01 kJ mol�1 for vandetanib and �103.53 kJ mol�1 for sel-
percatinib towards the V804M gate-keeper mutant. Accordingly,
6 NPs from the above 12 NPs demonstrated better docking
scores as well as BFE values than reference inhibitors (Tables
S2† and 4). The MM/PBSA analysis revealed a BFE value of
�93.36 kJ mol�1 for vandetanib and �105.83 kJ mol�1 for sel-
percatinib towards the V804L gate-keeper mutant protein.
Accordingly, 3 NPs from the above 12 NPs exhibited better
docking scores as well as BFE values than reference inhibitors
(Tables S3† and 5). Thus, a total of 3 NPs were considered as hits
inhibiting theWT as well as gate-keeper mutations – V804M and
V804L (Table 5).
3.7 Stability and interaction analysis of hits with wild-type
(WT) and mutated RET kinase domains

The backbone RMSD of complexes was used as the criteria to
assess the stability of all systems for the entire simulation
period of 20 ns. The simulated systems (WT, V804M, and V804L)
demonstrated steady-state stability for complete production run
(Fig. S3–S5†). The average RMSD for the WT systems was
observed to be in the range of 0.25 to 0.34 nm, while the average
© 2022 The Author(s). Published by the Royal Society of Chemistry
for both mutant systems was in the range of 0.28 to 0.36 nm
(Table S4†). Therefore, the representative structure was extrac-
ted from the last 1 ns of stable MD trajectories in order to
comprehend the binding mode of all NPs with WT and mutated
RET kinase domains.

The hydrogen bonds from the equilibrium trajectory of
vandetanib's and selpercatinib's interaction with WT and
mutated RET kinase domain was analyzed. It was observed that
vandetanib and selpercatinib displayed hydrogen bonding
interaction with key residue Ala807 of the kinase domain. The
mutation in residue Val804 disrupts the hydrogen bonding of
vandetanib and Ala807, as a result, vandetanib forms hydrogen
bonds with other residues of the domain. The V804M and
V804L mutation does not disrupt the hydrogen bonding of
selpercatinib and Ala807, thus suggesting a strong interaction.
This signies that the mutation in the gate-keeper residue does
not lead to steric hindrance between selpercatinib and RET
protein. Similarly, the NPs also displayed interactions with
residues of RET kinase domain including Leu730, Glu732,
Glu734, Phe735, Gly736, Lys758, Tyr806, Ala807, Ser811,
Arg878, Asn879, Lys889, Ser891, Asp892, Arg912 via hydrogen
bonds (Fig. 3–5). Interactions with the aforementioned residues
RSC Adv., 2022, 12, 1194–1207 | 1201

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1RA07328A


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
Ja

nu
ar

y 
20

22
. D

ow
nl

oa
de

d 
on

 1
0/

5/
20

24
 1

:1
9:

24
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
were also reported in previous studies.58–62 Furthermore,
hydrophobic and van der Waals interactions were observed with
various residues of RET kinase domain, as seen from their 2D
interaction plots (Fig. S6A, B and S7A–L†).

As perceived from 2D molecular interactions, our MD anal-
ysis conrmed that vandetanib was not observed to form any
interaction with Met804 and Leu804 residue (Fig. S6C and E†).
This analysis was consistent with previously published study by
George Priya Doss et al.59 On the other hand, selpercatinib
demonstrates van der Waals interaction with Met804 and
Leu804 residues (Fig. S6D and F†). The molecular interactions
of NPs with mutated kinase domains suggested no steric
clashes with the Val804 residue when mutated to methionine
(Fig. S8†) or leucine (Fig. S9†). Instead, interactions of our
acquired NPs with Met804 and Leu804 residues were observed
via van der Waals or hydrophobic p-bonds (Fig. S8 and S9†).
From the above-mentioned scrupulous analysis, 3 hits were
observed to demonstrate better docking scores as well as BFE
values than the reference inhibitors for WT and mutated RET
proteins (Tables S1–S3†). Hence, ZINC02123418 (Hit1),
ZINC02113839 (Hit2), and ZINC04030012 (Hit3) were consid-
ered as the most potent compounds capable of inhibiting the
WT as well as the RET gate-keeper mutant forms.

A comparison of their backbone root mean square uctua-
tion (RMSF) was further performed for assessing the exibility
of RET WT and mutated forms. Accordingly, the backbone
RMSF was measured for reference inhibitors and 3 hits
Fig. 5 The binding mode of 3 acquired hits with gate-keeper (V804L) m
Hydrogen bonds are shown as green dashed lines.

1202 | RSC Adv., 2022, 12, 1194–1207
obtained from the above analyses. Previous RMSF study by
George Priya Doss et al. suggested that V804M mutation affects
the binding of vandetanib with RET and thus makes the back-
bone more exible.59 Similar RMSF pattern was observed in our
study for vandetanib. When Val804 is mutated to methionine or
leucine, the residue backbone adopts a higher uctuation as
compared to WT for vandetanib (Fig. 6A). On the other hand,
the residue backbone for selpercatinib does not adopt uctua-
tion as compared to WT, during the course of the simulation
(Fig. 6B). This report suggests that V804M/L mutation does not
affect the binding of selpercatinib with RET. As seen from the
RMSF plots of 3 hits, the RMSF pattern of Hit2 was observed to
similar to the pattern of vandetanib, thus showing larger uc-
tuations (Fig. 6D). This suggests that even though Hit2
demonstrates signicant BFE towards RET WT and mutated
forms, its binding is affected by the Val804 mutation. However,
the RMSF pattern for Hit1 and Hit3 was observed to be similar
to that seen for selpercatinib (Fig. 6C and E). Thus, it can be
postulated that the V804M/L mutation does not affect the
binding of Hit1 and Hit3. Therefore, from the above overall
analyses, we anticipate that our hits can be deemed t for RET
WT and gate-keeper mutant inhibition.

The BFE calculations via MM/PBSA enables the decomposi-
tion of DGbind values into identiable contributions.52 As
perceived from the free energy analysis, the van der Waals
interaction provided the highest driving force for the binding of
vandetanib and selpercatinib (Tables 3–5). On the other hand,
utant RET kinase domain and molecular interactions with key residues.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Backbone RMSFs are shown as a function of time for wild-type (WT), V804M, and V804L RET protein with the reference inhibitors, (A)
vandetanib, (B) selpercatinib, and acquired hits, (C) Hit1, (D) Hit2, and (E) Hit3.
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the driving force for the binding of hits was dominated by the
electrostatic as well as the van der Waals interaction contrib-
uting to their total BFE values (Tables 3–5). Furthermore, the
individual residues contributing to the total free energy of
© 2022 The Author(s). Published by the Royal Society of Chemistry
binding for reference inhibitors and hits were probed. It was
observed that residues Val738, Lys758, Arg878, and Asn879
contributed to the total BFE of vandetanib, while residues
Val738 and Leu881 dominated the total BFE for selpercatinib
RSC Adv., 2022, 12, 1194–1207 | 1203
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Fig. 7 Energy decomposition of individual residues via MM/PBSA contributing to the total binding free energy of reference inhibitors – van-
detanib (A, C, and E) and selpercatinib (B, D, and F) with wild-type (WT), V804M, and V804L RET protein structures.

Fig. 8 Energy decomposition of individual residues viaMM/PBSA contributing to the total binding free energy of 3 hits – Hit1 (A, D, and G), Hit2
(B, E, and H), and Hit3 (C, F, and I) with wild-type (WT), V804M, and V804L RET protein structures.
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(Fig. 7). Additionally, the highest entropic contribution for
binding of hits was provided by Lys758 and Arg878 along with
other residues of the binding pocket (Fig. 8).
1204 | RSC Adv., 2022, 12, 1194–1207
The 3 identied hits were searched in the PubChem chemistry
database (accessed on 10th September 2021, https://
pubchem.ncbi.nlm.nih.gov/)63 to check if their activity is
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Table 6 The chemical structures and IUPAC names of reference inhibitors (vandetanib and selpercatinib) and acquired hits from ZINC natural
product database

Compound name IUPAC name Molecular structure

Reference inhibitors

Vandetanib
N-(4-Bromo-2-uorophenyl)-6-methoxy-7-
[(1-methylpiperidin-4-yl)methoxy]quinazolin-4-amine

Selpercatinib
6-(2-Hydroxy-2-methylpropoxy)-4-[6-[6-[(6-methoxypyridin-3-yl)methyl]-3,
6-diazabicyclo[3.1.1]heptan-3-yl]pyridin-3-yl]pyrazolo
[1,5-a]pyridine-3-carbonitrile

ZINC natural product database hits

Hit1 (ZINC02123418)
3-Benzylsulfanyl-2-[[2-[(7-methyl-4-oxo-2,3-dihydro-1H-
cyclopenta[c]chromen-9-yl)oxy]acetyl]amino]propanoic acid

Hit2 (ZINC02113839)
4-[[[2-(3,4,7-Trimethyl-2-oxochromen-5-yl)oxyacetyl]
amino]methyl]cyclohexane-1-carboxylic acid

Hit3 (ZINC04030012)
6-[[2-[(3-Methyl-6-oxo-7,8,9,10-tetrahydrobenzo[c]
chromen-1-yl)oxy]acetyl]amino]hexanoic acid
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reported in the literature for RET RTK inhibition. Consequently,
their SMILES (simplied molecular-input line-entry system) IDs
were entered in the PubChem search bar. The search analysis
suggested that the activity of our acquired hits has not been
assessed for RET inhibition. Furthermore, BIOVIA Draw 2020 was
used to generate the 2D structures of reference inhibitors and our
obtained hits. The chemical structures along with their IUPAC
names were presented as below (Table 6). The reference inhib-
itor, vandetanib is an anilinoquinazoline, while selpercatinib is
a carbonitrile. Compared to the reference inhibitors, our ob-
tained hits are propanoic, carboxylic, and hexanoic acids. The
inhibitors of aforementioned origins have not been reported in
literature for RET inhibition till date and also represent the
features of the generated pharmacophore model (Fig. S10†).
Thus, we envision that these hitsmaybe effective drug candidates
against RET and can be recommended as potent therapeutics for
WT as well as gate-keeper RET mutant forms.
4. Conclusion

A receptor–ligand pharmacophore model exploiting the crystal
structure of RET tyrosine kinase with its co-crystallized
© 2022 The Author(s). Published by the Royal Society of Chemistry
inhibitor, PP1, was generated and employed for virtual
screening of ZINC natural products (NPs) database. The ob-
tained NPs were probed for their drug-likeness properties and
the acquired drug-like NPs were subjected to molecular docking
with RET wild-type (WT) kinase domain. A total of 27 NPs
demonstrated better docking scores than the reference inhibi-
tors, vandetanib and selpercatinib. Subsequent molecular
simulations in combination with binding free energy (BFE)
calculations of 27 NPs resulted in 12 NPs exhibiting better BFE
values than reference inhibitors. The docking, simulations, and
BFE computation of 12 NPs with RET gate-keeper residue (V804)
mutant forms was further performed, resulting in 3 NPs indi-
cating signicantly better dock scores and BFE scores than
reference inhibitors. Thus, the 3 NPs were deemed as hits for
WT, V804M, and V804L RET protein structures. The obtained
hits did not demonstrate steric hindrance with the mutated
gate-keeper residue. Moreover, the highest contribution for the
total BFE of hits with RET WT and mutated forms was provided
by residues – Lys758 and Arg878. Additionally, the scaffolds of
hit molecules have not been reported hitherto for RET inhibi-
tion and hence, can be considered as novel therapeutics for
RSC Adv., 2022, 12, 1194–1207 | 1205
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developing effective RET inhibitors, specically targeting the
gate-keeper mutations.
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40 P. Śledź and A. Caisch, Curr. Opin. Struct. Biol., 2018, 48,
93–102.

41 J. Zhao, Y. Cao and L. Zhang, Comput. Struct. Biotechnol. J.,
2020, 18, 417.

42 M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith,
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