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Brønsted acid catalyzed enantioselective addition
of hydrazones to 3-indolylmethanols†

Steffen Mader,a Modhu Sudan Maji, a,b Iuliana Atodireseia and
Magnus Rueping *a,c

The organocatalytic asymmetric addition of hydrazones to indole derivatives in the presence of chiral

Brønsted acids is reported. A large variety of substrates are tolerated and the products are obtained in

good yields and with excellent enantioselectivities. This metal-free reaction provides a convenient route

to enantiopure β-substituted tryptophan derivatives in a concise fashion.

Introduction

In the last two decades, organocatalysis has attracted increas-
ing interest from the chemical community.1 The scientific
endeavors in this research area led to a tremendous growth
and organocatalysis has become a versatile tool to control the
stereoselectivity and a complementary approach to metal cata-
lysis.2 However, emphasis has mainly been given to a narrow
group of nucleophiles, including carbonyls, nitroalkanes, CH-
acidic-, electron rich aromatic and heteroaromatic compounds
due to their defined reactivity, easy synthesis and availability.
Other versatile functional groups and molecules are often neg-
lected. Hydrazones, for example, belong to the most versatile
groups in terms of reactivity with only a few reported appli-
cations in asymmetric organocatalysis so far.3 Depending on
the substituents on the nitrogen and the azomethine carbon
atom, hydrazones can either act as electrophile or nucleophilic
acyl anion equivalents in Umpolung reactions (Scheme 1).
There are also reports describing the nucleophilic addition of
the nitrogen atom to electrophiles.4 Thus, in order to control
the ambident nucleophilicity of hydrazones and to avoid the
formation of complex product mixtures, the substituents must
be selected carefully. In this context, Fernández et al. reported
the use of donor–acceptor-substituted hydrazones for the 1,4-
addition to α,β-unsaturated aldehydes.3f In this protocol, the
combination of an EWG on the azomethine carbon atom and

a bulky EDG on the nitrogen atom enhances the nucleophili-
city of the carbon atom as illustrated in structure B, thus pre-
venting alkylation of the nitrogen (Scheme 1). In addition,
the presence of electron withdrawing groups supports the
Brønsted-acid-catalyzed [1,3]-hydride shift under mild con-
ditions. The produced hydrazones, which can be considered as
masked carbonyl equivalents, can then be further reacted.

Recently, the addition of nucleophiles to in situ generated
indolyl iminium ions D has been reported (Scheme 2).5 It was
shown that 3-indolylmethanols C easily dehydrate in the pres-
ence of Brønsted acids to furnish stabilized iminium ions D.6

In the case of chiral phosphoric acids, tight chiral contact ion
pairs are formed, so that the subsequent vinylogous Mannich-
type-reaction occurs in an asymmetric fashion.

Following a similar approach via a tight chiral contact ion
pair intermediate, we anticipated that acceptor-donor substi-
tuted hydrazones would react with indolyl iminium ions to
generate indolyl hydrazones which can be regarded as masked
tryptophan derivatives.

Over the last few years, the replacement of amino acids in
peptides with non-natural analogues has gained a major inter-

Scheme 1 General reactivity of hydrazones.
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est. Simple β-substituted analogues show great therapeutic
impact in numerous biologically active peptides,7 and they can
be used to investigate peptide-receptor interactions.8 However,
the enantioselective synthesis of these analogues is still
difficult to achieve. We herewith present a highly enantio-
selective method to access artificial tryptophan derivatives via
a new asymmetric Brønsted acid catalyzed addition of hydra-
zones to 3-indolylmethanols.

Results and discussion

Initially we exploited the influence of different solvents for the
synthesis of the targeted tryptophan derivatives. For this
purpose, alcohol 1a was reacted with hydrazone 2a at 0 °C
together with 5 mol% of Brønsted-acid 3a (Table 1). To our

delight full conversion of the starting material was achieved
and the desired product 4a was isolated in moderate yield and
enantioselectivity. While chlorinated and polar solvents gave
inferior or comparable results (entries 2–5), switching to

Scheme 2 Reactivity of 3-indolylmethanols.

Table 1 Optimization of the reaction conditions – impact of solvent,
temperature and reaction time on the reaction outcome

Entrya Solvent T (°C) Time (d) Yieldb (%) eec (%)

1 CHCl3 0 3 44 32
2 DCM 0 3 15 22
3 DCE 0 3 34 21
4d THF rt 3 49 37
5d CH3CN rt 5 20 17
6 Toluene 0 3 78 57
7 Ph-CF3 0 3 39 36
8d Benzene rt 2 68 34
9 o-Xylene 0 1 54 56
10 Mesitylene 0 1 63 58
11d n-Hexane rt 5 — —

a Reaction conditions: 1a (0.13 mmol), 2a (0.10 mmol), 3a (5 mol%),
solvent (2 ml). b Yield of isolated 4a after full conversion of the starting
material. cDetermined by HPLC or SFC on chiral stationary phases.
d Reactions were conducted at rt as no significant product formation
was observed at 0 °C.

Table 2 Screening of different catalysts and reaction conditions

Entrya Catalyst T (°C) Time (d) Yieldb (%) eec (%)

1 3a 0 3 78 57
2 3b 0 2 59 46
3 3c 0 2 40 44
4 3d 0 2 26 51
5 3e 0 2 32 19
6 3f 0 2 44 41
7 3g 0 7 39 36
8 3h 0 2 68 65
9 3i 0 2 68 65
10 3j 0 7 15 19
11 3k 0 7 10 34
12d 3l 0 3 15 44
13 3f −25 7 40 63
14 3f −40 7 50 70
15 3h −20 2 78 68
16e 3h 0 2 73 64

a Reaction conditions: 1a (0.13 mmol), 2a (0.10 mmol), 3 (5 mol%),
toluene (2 ml). b Yield of isolated 4a after full conversion of the starting
material. cDetermined by HPLC or SFC on chiral stationary phases.
d Triflamide catalyst 3l with NHTf instead of OH. e Reaction with
addition of 4 Å molecular sieves.

Table 3 Evaluation of different hydrazones

Entrya,b 2 R Time (d) Yieldc (%) eed (%)

1 2a Ph 2 68 65
2 2b 4-MeO-Ph 1 82 70
3 2c 4-Cl-Ph 2 20 60
4 2d Me 1 41 29
5 2e tBu 1 41 77
6e 2e tBu 2 96 93

a Reaction conditions: 1a (0.13 mmol), 2 (0.10 mmol), 3h (5 mol%),
toluene (2 ml), 0 °C. b 4a: R = Ph; 5a: R = 4-MeO-Ph; 6a: R = 4-Cl-Ph; 7a:
R = Me; 8a: R = tBu. c Yield of isolated 4a–8a after full conversion of
the starting material. dDetermined by HPLC or SFC on chiral station-
ary phases. e Reaction at −30 °C.
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unpolar benzene derivatives seemed more promising (entries
6–10). In the case of toluene, 4a was isolated with 78% yield
and 57% ee.

Thus, toluene was selected for further optimization studies.
Interestingly, no conversion occurred in hexane due to the
insufficient solubility of the reactants and catalyst (entry 11).

After solvent optimization, we turned our attention to
different Brønsted-acid catalysts (Table 2). It turned out, that
the steric bulk introduced at the backbone of the BINOL
moiety has a major impact on the reactivity and selectivity. In
this context, only Brønsted-acids 3h and 3i performed better
than 3a in terms of yields and enantioselectivity. As catalyst 3i
led to the same results as 3h, we decided to use 3h due to its
easier synthesis. Interestingly, unlike anticipated, the more
acidic triflamide catalyst 3l gave inferior results (entry 12).
Once the optimal catalyst was found, we investigated the effect
of temperature on the reaction outcome. We found that by
decreasing the temperature, improved enantioselectivities were
obtained. At −20 °C product 4a was isolated with 78% yield
and 68% ee (entry 15). In addition, the presence of 4 Å mole-
cular sieves did not have any beneficial effect on the outcome
of the reaction (entry 16).

Having established the best conditions with respect to
solvent, catalyst and temperature, we tried to apply different
hydrazones to further improve the enantiomeric excess
(Table 3). The electron donating methoxy group (entry 2) led to
an improved yield and ee-value, whereas the presence of an
electron withdrawing group (entry 3) led to the opposite result,
as expected. Even better results were achieved by applying
hydrazones with a tert-butyl substituent (entry 5). By lowering
the reaction temperature to −30 °C product 8a was isolated
with excellent yield (96%) and a very good enantiomeric excess
(93% ee).

With the optimal reaction conditions in hand, we assessed
the substrate scope of the hydrazone addition (Scheme 3). We
achieved very good results with substrates bearing EDG (8b–g)
with yields up to 99% and enantioselectivity values up to 97%.
Furthermore, the products were formed with good yields and
enatioselectivites with EWG groups as trifluoromethyl (8h) and
fluorine (8k) at the phenyl ring, as well as for bulky groups (8i–
j). The protocol works also well for non-aromatic substituents
with 94% yield and 93% ee for a cyclohexyl substituent (8k)
and also with an acetylene substituent (8m) whereas the yield
dropped to 22% in this case.

In addition, it is also possible to synthesize backbone-sub-
stituted tryptophan derivatives in a high enantiomeric purity.
Different substituents at the indole 2-position as well as substi-
tuents in the 5- and 7-position were tolerated, and the pro-
ducts 8n–r were obtained with good yields and with excellent
enantiomeric excess (up to 98%). The absolute configuration
of product 8i was determined as R by CD spectroscopy.

Conclusions

In conclusion we have developed a general metal-free highly
enantioselective method which allows the synthesis of artifi-
cial tryptophan derivatives. The chiral phosphoric acid 3h
enables the addition of donor-substituted hydrazones to

Scheme 3 Substrate scope of the organocatalytic enantioselective
addition of hydrazones to 3-indolylmethanols. Reaction conditions:
0.13 mmol 1, 0.10 mmol 2e, 5 mol% 3h, 2 ml toluene, −30 °C, 48 h. The
enantiomeric excess was determined by HPLC or SFC on chiral station-
ary phases. a1 mmol 1. b72 h.
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3-indolylmethanols in excellent yields and with excellent
enantioselectivity values.
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