Ethane oxidative dehydrogenation with CO2 on thiogallates†
Abstract
The CO2-assisted oxidative dehydrogenation of ethane (ODH-CO2) attracts a lot of research interest since it combines greenhouse gas utilization with the production of valuable chemicals. The present study demonstrates the potential of the novel non-classic catalysts, alkali thiogallates, in this reaction. The contribution also reports a novel solvothermal synthesis method to prepare crystalline KGaS2 thiogallate materials. Despite the low surface area of the bulk KGaS2 system, the material shows substantial activity in CO2 to CO transformation with conversions in the range of 22–36% at 700–800 °C. The catalyst allows utilization of the co-produced hydrogen from ethane thermal cracking for CO2 hydrogenation without substantially impacting ethylene yield even at 800 °C at the conversion level of ethane close to 70%. The catalyst demonstrates stable performance with insignificant coke formation. The structure of the KGaS2 thiogallate material is fully conserved after the reaction. These results open a promising opportunity for the thiogallate materials as catalysts with moderate hydrogenation function, which are highly tolerant to the CO and highly reactive hydrocarbons environments.
- This article is part of the themed collection: Synthesis, modification and tailoring of properties of nanoporous materials