Issue 15, 2022

Codonopsis pilosula polysaccharides attenuate Escherichia coli-induced acute lung injury in mice

Abstract

Acute lung injury (ALI) is an inflammatory lung disease that is caused by bacterial infection. Lipopolysaccharide (LPS), a prototype pathogen-associated molecular pattern (PAMP) from Gram-negative bacteria such as Escherichia coli (E. coli), is an essential risk factor for ALI. LPS and E. coli induced the activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-κB) signaling pathways, which led to the increasing immune molecule transcription, including pro-inflammatory cytokine and chemokine secretion. Codonopsis pilosula polysaccharides (CPPS) exhibit various biological activities and pharmacological effects. However, the effect of CPPS on ALI caused by LPS stimulation or E. coli infection remains unclear. Our results showed that CPPS (6.25, 12.5, 25, or 50 μg mL−1) could attenuate the secretion of TNF-α and IL-1β and impair the phosphorylation of ERK, p38 and p65 in E. coli-infected macrophages without causing toxic reactions. In addition to regulating the secretion of pro-inflammatory cytokines and the activation of MAPK and NF-κB signaling pathways, CPPS could enhance bacterial phagocytosis and intracellular killing in macrophages, and inhibit the bacterial growth of E. coli. In vivo experiments showed that CPPS attenuated LPS- and E. coli-induced lung damage in mice, which was characterized by decreased pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) and chemokine (RANTES) production and production of the biomarkers of tissue damage (HABP2 and HMGB1) in the lungs. Altogether, this study demonstrated that CPPS have a protective effect on the lungs in LPS- and E. coli-induced ALI mouse models, suggesting that CPPS could be a potential drug for the treatment of ALI.

Graphical abstract: Codonopsis pilosula polysaccharides attenuate Escherichia coli-induced acute lung injury in mice

Article information

Article type
Paper
Submitted
05 May 2022
Accepted
28 Jun 2022
First published
28 Jun 2022

Food Funct., 2022,13, 7999-8011

Codonopsis pilosula polysaccharides attenuate Escherichia coli-induced acute lung injury in mice

Z. Gong, S. Zhang, B. Gu, J. Cao, W. Mao, Y. Yao, J. Zhao, P. Ren, K. Zhang and B. Liu, Food Funct., 2022, 13, 7999 DOI: 10.1039/D2FO01221A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements