Issue 1, 2022

Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid

Abstract

Herein, we report a new class of high internal phase gel emulsions (gel-HIPEs) that are mechanically robust, adaptable, and processable. They can be synthesized facilely by using the natural food-grade saponin glycyrrhizic acid (GA) as the sole stabilizer, which is shown to be versatile for various oils. The structural properties of these HIPEs including appearance, viscoelasticity and processability are well controlled by simply changing the concentration of GA nanofibrils. When the GA nanofibril concentration exceeds 0.3 wt%, the unique gel-HIPEs can be produced through the formation of fibrillar hydrogel networks in the continuous phase. When the nanofibril concentration only increases to 5 wt%, it is surprising to see that these gel-HIPEs display an extremely high mechanical strength, and the storage moduli as well as the yield stress values can reach 408.5 kPa and 3340 Pa (or even more), respectively. We conjecture that such remarkable mechanical performance is mainly attributed to the highly viscoelastic GA nanofibrillar networks in the continuous phase of gel-HIPEs, which can actively trap the nanofibril-coated emulsion droplets and thus strengthen the gel matrix. Consequently, the robust gel-HIPEs can be used as a solid template to fabricate stable porous materials without the need for crosslinking of the continuous phase, and the open- and closed-cell foam microstructures are controlled by the nanofibril concentration. Furthermore, the nanofibril-based HIPEs are promising long-term delivery vehicles with controlled-release properties for lipophilic active cargoes, since the strong fibrillar networks at the droplet surfaces and in the continuous phase can effectively retard the active release.

Graphical abstract: Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid

Supplementary files

Article information

Article type
Paper
Submitted
29 May 2021
Accepted
17 Nov 2021
First published
22 Nov 2021

Food Funct., 2022,13, 280-289

Robust and highly adaptable high internal phase gel emulsions stabilized solely by a natural saponin hydrogelator glycyrrhizic acid

M. Xu, L. Ma, Q. Li, J. Wu, Z. Wan, T. Ngai and X. Yang, Food Funct., 2022, 13, 280 DOI: 10.1039/D1FO01656C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements