Issue 12, 2022

Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver–selenide thermoelectric devices

Abstract

Flexible thermoelectric generators (TEGs) have shown immense potential for serving as a power source for wearable electronics and the Internet of Things. A key challenge preventing large-scale application of TEGs lies in the lack of a high-throughput processing method, which can sinter thermoelectric (TE) materials rapidly while maintaining their high thermoelectric properties. Herein, we integrate high-throughput experimentation and Bayesian optimization (BO) to accelerate the discovery of the optimum sintering conditions of silver–selenide TE films using an ultrafast intense pulsed light (flash) sintering technique. Due to the nature of the high-dimensional optimization problem of flash sintering processes, a Gaussian process regression (GPR) machine learning model is established to rapidly recommend the optimum flash sintering variables based on Bayesian expected improvement. For the first time, an ultrahigh-power factor flexible TE film (a power factor of 2205 μW m−1 K−2 with a zT of 1.1 at 300 K) is demonstrated with a sintering time less than 1.0 second, which is several orders of magnitude shorter than that of conventional thermal sintering techniques. The films also show excellent flexibility with 92% retention of the power factor (PF) after 103 bending cycles with a 5 mm bending radius. In addition, a wearable thermoelectric generator based on the flash-sintered films generates a very competitive power density of 0.5 mW cm−2 at a temperature difference of 10 K. This work not only shows the tremendous potential of high-performance and flexible silver–selenide TEGs but also demonstrates a machine learning-assisted flash sintering strategy that could be used for ultrafast, high-throughput and scalable processing of functional materials for a broad range of energy and electronic applications.

Graphical abstract: Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver–selenide thermoelectric devices

Supplementary files

Article information

Article type
Paper
Submitted
09 Jun 2022
Accepted
27 Sep 2022
First published
21 Oct 2022

Energy Environ. Sci., 2022,15, 5093-5104

Author version available

Machine learning-assisted ultrafast flash sintering of high-performance and flexible silver–selenide thermoelectric devices

M. Saeidi-Javash, K. Wang, M. Zeng, T. Luo, A. W. Dowling and Y. Zhang, Energy Environ. Sci., 2022, 15, 5093 DOI: 10.1039/D2EE01844F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements