Experimental and theoretical insights into Co–Ln magnetic exchange and the rare slow-magnetic relaxation behavior of [Co II2Pr]2+ in a series of linear [Co II2Ln]2+ complexes†
Abstract
We herein report a series of near-linear trinuclear complexes [Co2Ln(HL)4(NO3)](NO3)2 (where HL = (2-methoxy-6-[(E)-2′-hydroxymethyl-phenyliminomethyl]-phenolate) with Ln(III) = La (1), Ce (2), Pr (3)). For the comparative study, we have also included the recently reported analogous complexes of Gd(III), Tb(III), and Dy(III) (complexes 4–6) with the same H2L ligand. The experimental nature of the dc magnetic susceptibilities profile and an empirical approach revealed that the magnetic exchange interaction between Co(II) and Ln(III) having <4f7 (complexes 2 and 3) is antiferromagnetic while the dominant interaction between Co(II) and Ln(III) having ≥4f7 (complexes 4–6) is ferromagnetic. Dynamic magnetic relaxation studies on complexes 1–3 revealed the field induced single-molecule magnetic (SMM) behavior of 1 and 3 with effective energy barriers of 10.65 K and 15.03 K respectively, for magnetic relaxation. To the best of our knowledge, 3d-Pr(III) based zero or field induced SMMs have not been reported to date. CASSCF/SO-RASSI/SINGLE_ANISO based ab initio calculations on the X-ray structures of complexes 1–6, followed by POLY_ANISO simulations, estimated the magnetic exchange coupling constants JCo–Ln and JCo–Co and also rationalized our experimental findings for the dynamic magnetic properties.