An optimal molecule-matching co-sensitization system for the improvement of photovoltaic performances of DSSCs†
Abstract
Three biphenyl co-sensitizers (4OBA, 8OBA and 12OBA) with different terminal oxyalkyl chains were synthesized and co-sensitized respectively with the main dye (NP-1) in co-sensitized solar cells (co-DSSCs). The effects of the terminal oxyalkyl chains on the photophysical, electrochemical and photovoltaic properties of the co-DSSCs were systematically investigated. The optimal molecular matching relationship between the co-sensitizers and the main dye was obtained through density functional theory (DFT) calculations. Consequently, 4OBA has the most appropriate three-dimensional (3D) molecular structure, which could not only fill the gap between the large-size dyes but also plays a partial shielding role, inhibiting dye aggregation and electron recombination, therefore yielding the highest power conversion efficiency (PCE) for the co-DSSCs with NP-1@4OBA. This study suggests that adjusting the terminal oxyalkyl chains of the co-sensitizers can be used to enhance the intramolecular charge transfer efficiency and inhibit electron recombination, ultimately improving the photovoltaic performances of the co-DSSCs.