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Ab initio non-covalent crystal field theory for
lanthanide complexes: a multiconfigurational
non-orthogonal group function approach†

Alessandro Soncini ‡*ab and Matteo Piccardo ‡b

We present a multiconfigurational ab initio methodology based on non-orthogonal fragments for the

calculation of crystal field energy levels and magnetic properties of lanthanide complexes, implementing

a systematic description of non-covalent contributions to metal–ligand bonding. The approach consists

of two steps. In the first step, appropriate ab initio wave functions for the various ionic fragments

(lanthanide ions and coordinating ligands) are optimized separately, accounting for the influence of the

surrounding environment within various approximations. In the second and final step, the scalar relativis-

tic (DKH2) electrostatic Hamiltonian of the whole molecule is represented on the basis of the optimized

metal–ligand multiconfigurational non-orthogonal group functions (MC-NOGFs), and reduced to an

effective (2J + 1)-dimensional non-orthogonal configuration interaction (CI) problem via Löwdin-

partitioning. Within the proposed formalism, the projected non-orthogonal CI Hamiltonian can be

expanded to any desired order of perturbation theory in the fragment-localised excitations out of the

degenerate space, and its eigenvalues and eigenfunctions provide systematic approximations to the

crystal field energies and wave functions. We present here a preliminary implementation of the

proposed MC-NOGF method developed for first-order degenerate perturbation theory within our own

ab initio code CERES, and compare its performance both with the simpler non-covalent orthogonal ab

initio approach, Fragment Ab Initio Model Potential (FAIMP) approximation, and the full CAHF/CASCI-SO

method, accounting for metal–ligand covalency in a mean-field manner. We found that the energies

and magnetic properties of 44 complexes obtained via an iteratively optimized version of our MC-NOGF

first-order non-covalent method compare remarkably well with those obtained using the full CAHF/

CASCI-SO method including metal–ligand covalency, thus exposing the predominantly electrostatic

character of the metal–ligand interactions, and are superior to those obtained using the FAIMP

approach, which in its iteratively optimised variant was believed to date to be the best ab initio descrip-

tion of non-covalent metal–ligand interactions.

Introduction

Trivalent lanthanide ions are extensively employed in many
technological applications, ranging from energy production to
life sciences.1 While they are certainly fundamental compo-
nents in many optical applications,2–4 these ions play a very
special role in magnetism, thanks to their large magnetic
moments and magnetic anisotropy.5–7 At the root of their
enhanced magnetic properties are the intrinsically strong

electronic correlation and spin–orbit coupling interactions
and comparatively weak interactions between the 4f electron
shell and its coordination environment, mainly as a result of
the 4f shell’s radially compact nature, and its consequent
efficient shielding from the surrounding electrostatic and
chemical environment by the outer 5s25p6 orbital shells.5 The
simplest and earliest approach to describe the splitting of a
ground (2J + 1)-fold degenerate ground multiplet produced by
the surrounding chemical environment is called crystal field
theory (CFT).8 CFT describes the splitting of the 4f many-
electron wave functions associated with the (2J + 1) ground
spin–orbit multiplet of the pristine atomic 4f-shell as operated
solely by the static electric fields induced by the charge dis-
tribution on the ligands. CFT entails a chemical bonding
description which is purely ionic, and it is in fact referred to
also as the ionic model.
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While clearly CFT is an oversimplified description for quan-
titative purposes, which even at the phenomenological level is
riddled by an over-parameterization problem (in low symmetry
the CFT potential consists of 27 free parameters), its heuristic
value should not be underestimated, even today within the field
of molecular magnetism.

For instance, Rinehart and Long9, discussing the aspheri-
cities of the electron density of the magnetic states in trivalent
lanthanide ions calculated by Sievers some twenty years
earlier10, pointed out how a proper axial (equatorial) distribu-
tion of the charge density in the coordinating ligands could be
harnessed to synthesise Ln complexes with large magnetic
anisotropy, by stabilizing the appropriate oblate (prolate)
charge density distribution in that specific ion. This simple
but insightful observation, based on the assumption of purely
ionic bonding interactions between the metal and the ligand,
has proven rather useful in guiding synthetic chemists towards
ever more efficient Ln-based single-molecule magnets (SMMs).

These simple electrostatics arguments were also successfully
translated into a more quantitative classical electrostatics
repulsion energy minimization procedure, which was shown
to be capable of semi-quantitatively predicting the specific
direction of the magnetic anisotropy axis in many Dy(III)
single-molecule magnets,11 a finding that was recently con-
firmed via X-ray diffraction experiments.12

Despite these useful results, it is known since the 1950s that
quantitative descriptions of lanthanide–ligand bonding cannot
be achieved without accounting for non-covalent interactions
other than pure electrostatics (e.g. induction, contact or disper-
sion interactions), and for various flavors of so-called covalent
contributions (charge transfer excitations of various kinds).13–22

A way to systematically account for all possible metal–ligand
electronic interactions consists of ab initio calculations,
typically based on molecular orbital (MO) theory, which in recent
years has proved to be a reliable tool for the description of low-
lying multiplets of lanthanide complexes with good accuracy.23

However, in these methods the interactions between the
electrons in the environment and the ion are not treated in a
perturbative manner, leading not only to an increased compu-
tational cost, but also to a difficult interpretation of the
different physical mechanisms involved in the description of
metal–ligand bonding.

A recent work presented a study on the role of the electro-
static interactions in the prediction of crystal field levels in
lanthanide complexes.21 In that paper, the authors analyzed the
ligand field generated by both different atomic charge distribu-
tions and a more rigorous approach based on the Fragment
Ab Initio Model Potential (FAIMP) method.24–27 Besides the
electrostatic interaction, the FAIMP approach allows inclusion
of (i) the exchange interaction between the electrons of the
ligand and the metal, and (ii) Pauli’s repulsion contribution
originating from the requirement of orthogonality between
the metal and ligand molecular orbitals, which prevents over-
delocalization of the electrons of one fragment in the core
regions of the other. The authors’ conclusions are that the
electrostatic approach, even at the ab initio level via the FAIMP

approach, does not suffice for an accurate description of
the crystal field levels in Ln(III) complexes, and hence that
covalency effects must play an important role.

In this work we investigate fragment ab initio modelling of
crystal field levels in Ln(III) systems from an innovative point of
view. Because it is considered one of the most rigorous non-
covalent embedding methods of a metal ion in an ab initio
potential created by the ligand, we start by briefly reviewing
the FAIMP model as an ab initio electrostatic description. Then
we introduce a novel ab initio approach based on the theory
of multi-configurational non-orthogonal group functions
(MC-NOGF), with the aim of modelling the strongly ionic
metal–ligand interactions in terms of a systematic ab initio
description based on purely intermolecular non-covalent inter-
actions. This approach allows us to treat the metal–ligand
interactions as a perturbation acting on the wave functions of
the isolated fragments, which accounts in principle for both
purely non-covalent (electrostatics, induction and dispersion)
interactions and overlap effects which arise from the non-
orthogonal theoretical framework. While in other methods
focused on intermolecular interactions, such as Symmetry
Adapted Perturbation Theory (SAPT),28–30 the expansions of
the intermolecular interaction operator and of the overlap
integrals are truncated to some order, the electronic Hamiltonian
in MC-NOGF is the full molecular Hamiltonian, and the overlap
effects are fully accounted for. Moreover, in the developments the
preservation of the orbital localization on the fragments allows for
a clear identification and separation of the different molecular
interactions, which is not achievable in the conventional non-
orthonormal configuration interaction (CI) methods, where
usually the non-orthogonality is partially or totally removed before
the evaluation of the Hamiltonian operator matrix elements by
appropriate orbital mixing (e.g. biorthogonal basis sets).31–34 After
presenting the equations for an ab initio multiconfiguration
development involving matrix elements between the non-
orthogonal sets of orbitals, as we implemented in our own
quantum chemistry code CERES35, we study how different
approximations to the ligands’ wave function perform within
the MC-NOGF method in the simulation of the crystal field level
and magnetic properties of a set of Ln(III) complexes.

Hamiltonian and product functions

Within the Born–Oppenheimer approximation, the non-
relativistic electronic Hamiltonian of NTOT interacting electrons
can be defined in atomic units as

H ¼
XNTOT

i

hðiÞ þ
XNTOT

io j

gði; jÞ (1)

with

hðiÞ ¼ �1
2
r2ðiÞ þ VðiÞ and gði; jÞ ¼ 1

jrij j
(2)

where r2(i) = q2/qxi
2 + q2/qyi

2 + q2/qzi
2, V(i) is the electron-

nucleus potential, and rij = ri � rj. Within the group function
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(GF) approximation,36–43 the total Hamiltonian H can be
represented on the basis of the antisymmetrized products of
the wave functions for the single parts composing the system as

Ck¼
NR!NS! . . .

NTOT!

� �1=2

A cR
r ðx1; . . . ;xNR

ÞcS
s ðxNRþ1; . . . ;xNRþNS

Þ . . .
� �

(3)

with cR
r describing the group R, which collects NR electrons in

the state r, and A is the partial antisymmetrizer operator,
which exchanges the electron coordinates x between two, or
more, different groups. The group functions cR

r are individually
antisymmetric with respect to the electron exchange

cR
r (. . .,xi,. . .,xj,. . .) = �cR

r (. . .,xj,. . .,xi,. . .) (4)

and ortho-normalized

cR
r ðx1; . . . ; xNR

ÞjcR
r
0 ðx1; . . . ; xNR

Þ
D E

�
ð
cR
r ðx1; . . . ; xNR

Þ
� ��

cR
r0 ðx1; . . . ; xNR

Þdx1 . . . dxNR
¼ drr0

(5)

where dij is the Kronecker delta. The product function Ck is
fully characterized once the set of states k � (r, s,. . .) is made
explicit. No inter-molecular correlation is explicitly included in
a wave function of the form in eqn (3), since electrons belong-
ing to different groups are assumed to move independently, but
a large part of the intra-molecular correlation may be accounted
for by admitting some degree of configuration interaction
within each electron group.

Strongly orthogonal group functions
and the FAIMP approach

A convenient way to handle fragment approaches based on
group functions requires the group functions cR

r to fulfil a
so-called strong-orthogonality condition38:ð

½cR
r ðx1; xi; xj ; . . .Þ��cS

s ðx1; xk; xl ; . . .Þdx1 ¼ 0 (6)

so that integrating over any one variable x1 common to two
different group functions makes the integral vanish identically
for all values of the other variables xi. This is a much stronger
condition than the orthonormality requirement in eqn (5)
which is assumed for the different group functions within
each group.

It is well known in the literature that when a wave function
has the form given in eqn (3) and satisfies the conditions in
eqn (4), (5), and (6), the system is group-separable38. This
means that the total energy of the system E can be written as
(after integration over the spin variables)

E ¼hCkjHjCki

¼
X
R

HR þ
X
RoS

ðJRS � KRSÞ
(7)

where

HR = h cR
r |HR|cR

r i (8)

JRS ¼
ð
gð1; 2ÞPR

r ð1; 1ÞPS
s ð2; 2Þdr1dr2 (9)

KRS ¼ 1

2

ð
gð1; 2ÞPR

r ð1; 2ÞPS
s ð2; 1Þdr1dr2 (10)

where PR
r is the spinless one-particle density matrix of the

function cR
r . HR in eqn (8) is the electronic Hamiltonian for

the group R:

HR ¼
X
i2R

hðiÞ þ
X
io j
i; j2R

gði; jÞ (11)

where V(i) in h(i) is the potential energy of electron i in the field
of the nuclei of the total system.

Let us assume now that cR
r are functions of the sets of mono-

electronic spin-orbital functions {fR
i }, where fR

i (x) = wR
i (r)ZR

i with
spatial part wR

i (r) and spin ZR
i . Then eqn (6) is automatically

satisfied if we impose the orthonormality conditions:

wRi jwSj
D E

¼ dij if S ¼ R (12)

wRi jwSj
D E

¼ 0 if SaR (13)

Starting from the total wave function in eqn (3), and defin-
ing the groups R, S,. . . as doubly occupied closed-shell singlet
systems described by the functions

cR
r ¼ ðNR!Þ�1=2AR

YNR

i

fR
i ðxiÞ

¼ ðNR!Þ�1=2det fR
1 ðx1ÞfR

2 ðx2Þ . . .
�� ��þ

(14)

where AR is the antisymmetrizer operator which exchanges all
the electron spin–spatial coordinates x within the group R,
and det|. . .| indicates the Slater determinant. Huzinaga and
coworkers found that an optimum {fR

i } set, which minimizes
the energy E while holding fixed the {fS

i } sets with S a R, and
imposing the conditions in eqn (12) and (13), is given by24–26

F�
X
SaR

PS

" #
wRi
�� �

¼ eRi wRi
�� �

(15)

F is the Fock operator defined by

FðiÞ ¼ heff ðiÞ þ
XNR=2

j2R
2JR

j ðiÞ �KR
j ðiÞ

h i
(16)

with heff(i) given by

heffðiÞ ¼ hðiÞ þ
X
SaR

XNS=2

j2S
2JS

j ðiÞ �KS
j ðiÞ

h i
(17)

where J and K are the Coulomb and exchange operators,
respectively, describing the effective field at point i due to the
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electrons in the groups S:

JS
j ð1Þwð1Þ ¼ wð1Þ

ð
gð1; 2Þ½wSj ð2Þ��wSj ð2Þdr2 (18)

KS
j ð1Þwð1Þ ¼ wSj ð1Þ

ð
gð1; 2Þ½wSj ð2Þ��wð2Þdr2 (19)

Note that F is formally identical to the Fock operator for the
total wave function Ck. The projector PS originates from the
orthonormality conditions, and reads24–26

PS ¼
XNS=2

k2S
eSk wSk
�� �

wSk
� �� (20)

Eqn (15) can be used as the self-consistent field (SCF) equation
to determine the best orbitals for the group R interacting with
the closed-shell singlets included as one or more groups S,
enforcing the orthogonality between the orbitals of all groups.
Eqn (15) is the starting point of all the developments that go
under the name FAIMP.27,44

Let us now introduce a group M which is better described by
a multi-configurational wave function cM

m defined as

cM
m ¼

X
m0

Cmm0c
M
m0 (21)

where Cmm0 is the weight of the m0-th Slater determinant cM
m0 as

given in eqn (14) built from the set of othonormal spin–orbitals
{fM

i }. As usual when dealing with a multi-configurational
function, we can distribute the NM electrons into two sets of
orbitals: (i) one set collecting Ninact

M orbitals that are doubly

occupied in all the configurations cM
m0 , called inactive orbitals,

and (ii) a second set collecting Nact
M orbitals which allow for an

occupation number from 0 to 2, called active orbitals. Introdu-
cing cM

m in the product function Ck defined by eqn (3) we obtain

Ck ¼
X
m0

Cmm0Cl (22)

where now l � (m0, r, s,. . .) and k � (m, r, s,. . .). The problem of
finding an optimal set {fR

i } for the closed-shell singlet group R,
still described by a single Slater determinant wave function cR

r ,
leads to the Fock operator as defined in eqn (16), but now heff(i)
has the form

heffðiÞ ¼ hðiÞ þ
X

SaR;M

XNS=2

j2S
2JS

j ðiÞ �KS
j ðiÞ

h i

þ
XNinact
M

j2M
2JM

j ðiÞ �KM
j ðiÞ

h i

þ 1

2Nm

X
m

XNact
M

jk2M
rmjk 2JM

jk ðiÞ �KM
jk ðiÞ

h i
(23)

where JS
j (i)/JM

j (i) and KS
j (i)/KM

j (i) are defined in eqn (18) and
(19), and

JM
jk ð1Þwð1Þ ¼ wð1Þ

ð
gð1; 2Þ½wMj ð2Þ��wMk ð2Þdr2 (24)

KM
jk ð1Þwð1Þ ¼ wMj ð1Þ

ð
gð1; 2Þ½wMk ð2Þ��wð2Þdr2 (25)

where rm
jk is the one-electron transition density matrix for cM

m,
given by

rmjk ¼
X
m0;m00
½Cmm0 ��Cmm00

X
Z¼a;b

cM
m0
�� wjZ� �

wkZ
�� cM

m00
� �

(26)

which is averaged on Nm states in eqn (23) to account for the
energy degeneracy of cM

m functions. In this work the projector
operator PM is defined as

PM ¼ �
XN inact
M

k2M
ek wMk
�� �

wMk
� ���XNact

M

a2M
ea wMa
�� �

wMa
� �� (27)

Non-orthogonal group functions

FAIMP is an ab initio rigorous way to introduce the electrostatic
interactions and Pauli repulsion between the metal and the
environment; however, perhaps not surprisingly, it has shown
poor performance in the accurate modelling of the electronic
structure of Ln(III) complexes.21 To improve on this model,
while keeping on pursuing a fragment ab initio approach to
describe the metal–ligand interactions essentially in terms of
intermolecular forces, let us start again from eqn (3), fix the sets
of spin–orbitals {fR

i } for all groups to some optimal orbitals
obtained for the isolated fragments, and, crucially, relax the
strong-orthogonality constraints. Thus we define the wave
function for the whole system as

F ¼
X
k

DkCk (28)

where Ck is a product function as defined in eqn (3), including
a few closed-shell singlet groups described by cR

r wave
functions given in eqn (14), i.e. the ligands, and one center
characterized by the multi-configurational wave function cM

m

shown in eqn (21), i.e. the metal. We fix the spin-orbitals
entering the latter functions, and the Cmm0 coefficients entering
eqn (21), to the sets obtained by energy minimization on the
isolated fragments. Under this requirement, the orthogonality
relationships in eqn (12) and (13) read

wRi jwSj
D E

¼ dij if S ¼ R (29)

wRi jwSj
D E

¼ SRS
ij if SaR (30)

We are then interested in defining the optimal coefficients
Dk entering eqn (28), which can be estimated by variational
minimization of the total energy

E ¼ hFjHjFihFjFi (31)

or, equivalently, in a matrix form solving the eigenvalue
problem

HD = EMD (32)
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where

Mkk0 = hCk|Ck0i (33)

Hkk0 = hCk|H|Ck0i (34)

The dimension of the variational problem in eqn (32) is
typically very large. Hence, to reduce the dimensionality, and
also to set up an effective ab initio crystal field splitting theory
i.e. a degenerate perturbation theory within the lanthanide
ion’s degenerate ground level, we apply the Löwdin partitioning
procedure. This is achieved by partitioning the full space
spanned by H, D and M in the two subspaces A (here the
(2J + 1)-degenerate space of the lanthanide ground spin–orbit
multiplet) and B (the complement excitation space)38

HAA HAB

HBA HBB

 !
DA

DB

 !
¼ E

MAA MAB

MBA MBB

 !
DA

DB

 !
(35)

Thus an effective Hamiltonian H̃AA can be written for the
subspace A as

H̃AADA = EMAADA (36)

where

H̃AA = HAA � (HAB � EMAB)(HBB � EMBB)�1(HBA � EMBA)
(37)

Note that H̃AA is itself the function of the unknown energy E.
Using the matrix identity

(X � Y)�1 = X�1 + X�1Y(X � Y)�1 (38)

and using the fact that, upon iteration of eqn (38), the inverse
of the (X � Y) term can be written as

(X � Y)�1 = X�1 + X�1YX�1+. . . (39)

the matrix elements of H̃AA have the form

~Hkk02A ¼ Hkk0

�
X
t2B

ðHkt � EMktÞðHtk � EMtk0 Þ
Htt � EMtt

�
X
t2B

X
t02B

ðHkt � EMktÞðHtt0 � EMtt0 ÞðHt0k0 � EMt0k0 Þ
ðHtt � EMttÞðHt0t0 � EMt0t0 Þ

þ . . .

(40)

where eqn (39) has been used together with

X = HBB
diag � EMBB

diag (41)

Y = HBB
off-diag � EMBB

off-diag (42)

to make the different expansion terms explicit. This partition-
ing scheme projects the problem to the NOGFs formed from
the metal-based multielectron wave functions belonging to
the (2J + 1)-degenerate ground spin–orbit multiplet, defining
subspace A, whereas the interaction with the metal-based
and ligand-based excitations belonging to subspace B can be
accounted for in a perturbative manner, as per eqn (40).

Here we focus our attention on terms up to first-order in the
perturbative expansion eqn (40) (i.e. the very first term on the
right-hand side of eqn (40)). The energies are then determined
by eqn (36) with H̃kk0 = Hkk0, and the variational optimization
involves the diagonalization of a matrix of dimension (2 J + 1) �
(2J + 1) once the integrals in eqn (43)–(45) are made explicit.

Implementation in the code CERES:
cofactor versus inverse matrix
formalism

We describe here the implementation strategy pursued within our
own ab initio code CERES35,45 of the non-orthogonal CI problem
arising from eqn (36) and (37) represented on the basis of the
multiconfigurational non-orthogonal group functions, which is at
the heart of the proposed MC-NOGF fragment approach.

From now on we drop the indices (r, s,. . .) � (0, 0,. . .) in l
and k indices for simplification. The explicit form for the
normalization factor Mkk0 on the Ck basis set is given by

hCmjCm0 i ¼
X
n;n0
½Cmn��Cm0n0 hCnjCn0 i (43)

In Hkk0, the one-electron terms have the form

Cm

XNTOT

i

hðiÞ
�����

�����Cm0

* +
¼
X
n;n0
½Cmn��Cm0n0 Cn

XNTOT

i

hðiÞ
�����

�����Cn0

* +

(44)

and two-electron terms

Cm

XNTOT

io j

gði; jÞ
�����

�����Cm0

* +
¼
X
n;n0
½Cmn��Cm0n0 Cn

XNTOT

io j

gði; jÞ
�����

�����Cn0

* +

(45)

Defining the overlap matrix S as

Sij ¼ hfijfji where fi 2 Cn; fj 2 Cn0 (46)

it is well known in the literature that

hCn|Cn0i = det(S) (47)

Cn

XNTOT

i

hðiÞ
�����

�����Cn0

* +
¼
XNTOT

ij

hfijhjfjicof ½S�ðijÞ (48)

and

Cn

XNTOT

io j

gð1;2Þ
�����

�����Cn0

* +
¼ 1

2

XNTOT

iak

XNTOT

jal

hfifkjgjfjflicof ½S�ðijjklÞ

¼
XNTOT

iok

XNTOT

jo l

½hfifkjgjfjfli�hfifkjgjflfji�

� cof ½S�ðijjklÞ
(49)

where det(S) indicates the determinant of S, cof[S](ij) indicates
the first-order cofactor arising from S when the row i and the
column j are removed, and cof[S](ij|kl) indicates the second-
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order cofactor produced by further deleting the row k and the
column l. If S�1 exists, the cofactors can be expressed using the
Jacobi ratio theorem

cof[S](ij) = det(S)[S�1]ji (50)

cof[S](ij|kl) = det(S)([S�1]ji[S
�1]lk � [S�1]li[S

�1]jk) (51)

Although this theorem is a powerful tool that makes the
calculation of cofactors simpler, the use of eqn (50) and (51)
requires a matrix inversion for every couple of determinants in
eqn (43)–(45), and can be a non-valid development when the
matrix to be inverted is singular and the inverse does not exist.

Löwdin first presented a formula for the matrix elements of the
Hamiltonian between Slater determinants expressed in terms of
non-orthogonal spin-orbitals,46–49 and after this different meth-
ods have been suggested to avoid the need for calculating the
inverse, allowing for a rapid evaluation of the cofactors,50–52 but in
general they do not explicitly consider that the determinants from
the set employed in a calculation may differ only in few spin-
orbitals from a reference determinant. Hayes and Stone are the
first to emphasize the advantages coming from properly taking
this peculiarity into account,53 followed by Figari and Magnasco,
who generalized Hayes’ results.54 Starting from the latter devel-
opments, we present here a slightly modified approach, which
allows for both computational efficiency and generality.

We start reordering the spin-orbital in S to obtain the block
partitioning

S ¼ A U

V C

� �
(52)

where A is a symmetric matrix of dimension Ninact � Ninact, which
includes the overlap elements between the spin-orbitals that are
common to all the product functions, which are the inactive set of
spin-orbitals for the metal and the spin-orbitals included in the cR

0

group functions. The C block collects the overlap terms between
the Nact orbitals that can vary in the different product functions,
which in this paper coincide with the active set of spin–orbitals for
the metal. Note that Nact { Ninact. The U and V blocks include the

overlap elements between the active and inactive sets of spin-
orbitals. While U, V, and C depend on a specific product function
pair, A never changes. Then, S�1 can be written by the use of the
Woodbury matrix identity as55

S�1 ¼ A�1 þ XZ�1Y �XZ�1
�Z�1Y Z�1

� �
(53)

where Z = (C � VA�1U), X = A�1U, and Y = VA�1. To avoid
problems when Z is singular, we can apply eqn (50) back to the Z
matrix’s elements:

[Z�1]ij = cof[Z]( ji)det(Z)�1 (54)

or, in the matrix form

Z�1 = cof[Z]T det(Z)�1 (55)

where cof[Z]T indicates the matrix collecting all the first-order
cofactors of Z transpose. Defining the two matrices

T ¼ A�1 0

0 0

� �
(56)

and

W ¼
Xcof ½Z�TY �Xcof ½Z�T

�cof ½Z�TY cof ½Z�T

 !
(57)

and remembering that

det(S) = det(A)det(Z) (58)

eqn (50) and (51) can be written by the use of eqn (53) and
(55) as

cof[S](ij)det(A)�1 = det(Z)Tji + Wji (59)

cof ½S�ðijjklÞdetðAÞ�1 ¼ detðZÞ TjiTlk � TliTjk

	 

þ TjiWlk � TliWjk þWjiTlk

�WliTjk þ Kijkl

(60)

where Kijkl is defined as (all the possible cases under the
conditions i o k and j o l in eqn (49))

Kijkl ¼

P
po r

P
qo s

cof ½Z�ðqpjsrÞðXjpXlr � XjrXlpÞðYqiYsk � YsiYqkÞ ifði; jÞ 2 A; ðk; lÞ 2 A

�
P
po l

P
qo s

cof ½Z�ðqpjslÞðXjp � XjlÞðYqiYsk � YsiYqkÞ ifði; jÞ 2 A; ðk; lÞ 2 U

�
P
po r

P
qo k

cof ½Z�ðqpjkrÞðXjpXlr � XjrXlpÞðYqi � YkiÞ ifði; jÞ 2 A; ðk; lÞ 2 V

P
po l

P
qok

cof ½Z�ðqpjklÞðXjp � XjlÞðYqi � YkiÞ ifði; jÞ 2 A; ðk; lÞ 2 C

P
po r

cof ½Z�ðipjkrÞðXjpXlr � XjrXlpÞ ifði; jÞ 2 V; ðk; lÞ 2 V

P
qo s

cof ½Z�ðqjjslÞðYqiYsk � YsiYqkÞ ifði; jÞ 2 U; ðk; lÞ 2 U

�
P
po l

cof ½Z�ðipjklÞðXjp � XjlÞ ifði; jÞ 2 V; ðk; lÞ 2 C

�
P
qo k

cof ½Z�ðqjjklÞðYqi � YkiÞ ifði; jÞ 2 U; ðk; lÞ 2 C

cof ½Z�ðijjklÞ ifði; jÞ 2 C; ðk; lÞ 2 C

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(61)
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with the p, q, r, and s indices running on the Z block. The
relationship

cof[Z](ij|kl)det(Z) = cof[Z](ij)cof[Z](kl) � cof[Z](il)cof [Z](kj)
(62)

has been used to cancel out the 1/det(Z) factor from Kijkl terms,
and the permutational symmetry relationships

cof[Z](ij|kl) = �cof[Z](ji|kl) = �cof[Z](ij|lk) = cof[Z]( ji|lk)
(63)

have been used for simplification. We noted that, defining the
two matrices

Y0 ¼ Y �Ið Þ X0 ¼ X

�I

� �
(64)

where I is the identity matrix with rank(I) = rank(C), Zijkl can be
written by a unique expression as

Kijkl ¼
X
po r

X
qo s

cof ½Z�ðqpjsrÞðX 0jpX
0
lr � X

0
jrX

0
lpÞðY

0
qiY

0
sk � Y

0
siY

0
qkÞ

(65)

Eqn (59) and (60) are not affected anymore by singularities, and
they do not require any conditions but the existence of A�1.
Moreover, the need for the calculation of first- and second-
order cofactors of Z is not a big computational issue, because of
the generally small dimension of this matrix with respect to the
dimension of S. Defining det(C) = 1 when rank(C) = 0, note that
if rank(C) = 2 only one second-order cofactor for Z exists, and it
is 1, while the Kijkl term disappears when rank(C) o 2. Finally,
eqn (59) and (60) reduce to just the T terms when rank(C) = 0, as
expected. Some more simplifications can be done when making
the spin partitioning of S explicit, and by the use of the
Cholesky representation of the electron repulsion integrals,56

see the ESI.† The equations for the evaluation of the magnetic
moment and g-tensor within the MC-NOGF approach are also
reported in the ESI.†

Computational details

Calculations were carried out on a set of Ln(III) complexes to
analyze how the FAIMP and NOGF approximations to the
molecular wave function affect the energy gaps within the
lowest energy spin–orbit multiplet and the magnetic properties.
The results were compared with the energies obtained at the
complete active space configuration interaction with spin–orbit
(CASCI-SO) level coupled with the configuration averaged
Hartree–Fock (CAHF) method.45,57

In the CAHF/CASCI-SO strategy, the set of molecular orbitals
are generated at the CAHF level minimizing the average-energy
functional represented on the basis of all possible Slater
determinants, of any MS quantum number, built up allowing
Nact active electrons to be distributed in all the possible ways
in Mact active orbitals. Then, CAHF orbitals are used in the
CASCI-SO step to construct the representation of the total
Hamiltonian of the system, which includes both the Born–
Oppenheimer electrostatic and spin–orbit Hamiltonian, still on

the basis of all possible Slater determinants in the CAS space of
Nact electrons in Mact orbitals. Finally, the total Hamiltonian is
diagonalized to obtain the energy levels.

The number Mact = 7 active orbitals has been used for all the
Ln(III) ions studied (i.e. 4f atomic shell), and the number Nact =
8, 9, 10, and 11 active electrons has been used for Tb(III), Dy(III),
Ho(III), and Er(III) ions, respectively.

Within the FAIMP approach, the crystal field levels and
magnetic proprieties are estimated from the wave function of
the metal cM

m, optimized at the CAHF/CASCI-SO level in the
presence of the ligands described by the FAIMP model as

FAIMP1 cR
0 ;c

S
0 ;c

T
0

� � ����!FAIMP
cM
m

FAIMP2 cM
m ����!FAIMP

cW
0 ����!FAIMP

cM
m

FAIMP3 cW
0  !FAIMP

cM
m

where cR
0, cS

0, and cT
0 indicate the ground state closed shell

single Slater determinants of the separated molecules of the
ligands optimized at the HF level and cW

0 indicates the ground
state closed shell single Slater determinant of the whole group

of the ligands optimized at the HF level. ����!FAIMP
indicates that

the functions on the left-hand side affect the function on the

right-hand side by the FAIMP model, and  !FAIMP
indicates that

the functions on both the left- and right-hand sides are
adjusted to each other by a self-consistent procedure.

Within the NOGF theory presented in this paper, the crystal
field levels and magnetic proprieties are estimated by the
variational optimization of the pure electrostatic Hamiltonian
on the basis of the product functions in eqn (28), which
includes (i) the wave functions of the isolated metal cM

m

optimized at the CAHF/CASCI-SO level and (ii) the ground state
closed shell single Slater determinants optimized at the HF
level describing the ligands as

NOGF1 cR
0 ;c

S
0 ;c

T
0 ;c

M
m

NOGF2 cM
m ����!FAIMP

cW
0

h i
;cM

m

NOGF3 cM
m  !FAIMP

cW
0

h i
;cM

m

Note that in NOGF3 the functions cM
m included in the product

functions are the wave functions of the isolated metal without any
influence from the ligands, whereas cM

m used in the self-consistent
procedure to adjust cW

0 is discharged after the optimization.
The geometries of the Ln complexes analyzed have been

fixed to their experimental crystallographic structures reported
in the literature.58–66 We indicate the ligands with acac = acetyl-
acetonate, dppz = dipyridophenazine, dpq = dipyridoquinoxaline,
phen = 1,10-phenanthroline, hfac = hexafluoroacetylacetonate,
glyme = dimethoxyethane, paah = N-(2-pyridyl)-ketoacetamide,
tta = 2-thenoyltrifluoroacetonate, bipy = 2,2 0-bipyridine,
meOH = methanol, H3 trensal = 2,20,200-tris(salicylidene-
imido)trimethylamine, and tfpb = 4,4,4-trifluoro-1-phenylbutane-
1,3-dionato, see Fig. 1.
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All atoms were described by the ANO-RCC basis set,67 with
the contraction [8s7p5d3f2g1h] for Ln atoms, [4s3p2d1f] for C,
N, and O atoms coordinating the metal, [3s2p] for C, N, and O
atoms not coordinating the metal, and [2s] for H.

Scalar relativistic terms were included in the one-electron
part of the electrostatic Hamiltonian in all the HF, CAHF, and
CASCI-SO computations, within the second order Douglas–
Kroll–Hess (DKH2) approximation.68 In CASCI-SO evaluations,
the spin–orbit interaction was included by the atomic appro-
ximation to the Breit–Pauli Hamiltonian, in which the
two-electron spin–orbit integrals involving the atomic basis
functions on multiple centers are discharged. The Cholesky
representation of the electron repulsion integrals was used to
speed up the calculations, with d = 10�8.56

All the calculations were performed using the software
package CERES, an ab initio quantum chemistry package
specifically designed for the calculation of the electronic struc-
ture and magnetic properties of lanthanide complexes.

The errors affecting the energy gaps DEAPP
i = EAPP

i � EAPP
0 ,

calculated within a given spin–orbit multiplet M = (2S + 1)LJ by
the use of the approximation APP, were analyzed by the
statistical indicators

ð%errorÞAPP
i ¼ DEAPP

i � DEBENC
i

DEBENC
i

� 100 (66)

mAPP
M ¼

PN
i¼1
ð%errorÞAPP

i

N
(67)

sAPP
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1
ð%errorÞAPP

i � mAPP
M

h i2
N � 1

vuuut
(68)

where DEBENC
i = EBENC

i � EBENC
0 are the energy gaps calculated by

the use of the true HBP
SO, and N is the total number of states in

the multiplet (minus one for the ground state in the ground
spin–orbit multiplet). The results were graphically represented
by the use of the probability density of the normal distribution:

Pð%error; m; sÞ ¼ 1ffiffiffiffiffiffi
2p
p

s
e�ð%error�mÞ2=ð2s2Þ (69)

Results

Fig. 2–5 present the crystal field levels within the ground
spin–orbit multiplets of 44 different Tb(III)/Dy(III)/Ho(III)/Er(III)
complexes estimated by the use of the different methods
presented in the previous sections. In the figures, the energy
gaps calculated at FAIMP or NOGF levels are reported on the
x-axis, while the results obtained from CAHF/CASCI-SO simula-
tions on the integral systems are reported on the y-axis for
comparison (see also Tables S1–S4 in the ESI†).

In FAIMP1 and NOGF1 strategies the metal interacts with
the electron densities of the separated molecules, which are
included in the environment after separate optimisation. For
FAIMP1 simulations, the graphs show a general large under-
estimation of the energy gaps with respect to the CAHF/CASCI-
SO results for all the studied ions, with mean percentage errors
of about �80%/�90%. These results can be attributed to a poor
description of the ligands’ density, which, as expected, cannot
be described as the simple sum of the densities of the isolated
molecules, but the latter must adjust to each other within the
complex structure. However, it is noteworthy that generally
slightly better results are obtained when the densities of the
isolated molecules are treated within the NOGF method
(see NOGF1 results). This improvement is especially observed

Fig. 1 Sketch, mark and color code for the molecules studied in this work.
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for the Tb-pc2
� complex, which is formed by two highly p

conjugated pc�2 ligands, where the NOGF1 methodology repro-
duces the CAHF/CASCI-SO results with a mean %error smaller
than �20% and a small standard deviation of about 4%.

A general improvement in the results is obtained when the
ligands are described by a single wave function optimized on
the whole set of atoms present in the environment, and the
presence of a FAIMP model potential describing the metal ion.
This approach gives rise to the FAIMP2 and NOGF2 methods.

In this case, while the percentage errors affecting the crystal
field levels calculated by the FAIMP2 method are still rather
large for all the ions, the NOGF2 strategy performs significantly
better. In NOGF2 in fact the wavefunction of the ligands and
that of the isolated metal are combined together in a single
antisymmetrised non-orthogonal product function, which
leads to results in rather good agreement with those obtained
at the full CAHF/CASCI-SO level on the whole set of systems
explored here. This not only proves the importance of including

Fig. 2 Graphical representation of the crystal field levels within the ground spin–orbit multiplet 7F6 of different Tb(III) complexes, estimated at the CAHF/
CASCI-SO level on the whole system (y axis) versus the different approximations presented in this work (x axis). The mean m and standard deviation s for
the %errors affecting the energy gaps are represented by the normal distribution function.
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an accurate description for the electron density of the ligands,
but also seems to indicate that the rigid interaction (i.e. no
orbital relaxation) between the metal density optimized on the
isolated ion and a suitable density which accurately describes
the atoms in the environment already suffices for the modelling
of the crystal field splittings in these systems.

Finally, the third family of approximations explored here is
named FAIMP3 and NOGF3, where the densities of the metal and
the ligands are iteratively optimized to each other, to fully capture
the polarization effects of both ligands and metal electrons, and,

consequently, a refined description of electrostatic interactions
between metals and ligands. The only family of non-covalent
metal–ligand interactions that cannot be captured here is disper-
sion interactions, since the dynamical correlation is currently not
included in our wave function models. We note however that in
our proposed NOGF strategy such dispersion interactions can
indeed be captured by going in higher order expansion of
eqn (40), while this is not possible in the FAIMP approximation.

Despite the significant improvement observed in both
FAIMP3 and NOGF3 approaches, note that the FAIMP3 strategy

Fig. 3 Graphical representation of the crystal field levels within the ground spin–orbit multiplet 6H15/2 of different Dy(III) complexes, estimated at the
CAHF/CASCI-SO level on the whole system (y axis) versus the different approximations presented in this work (x axis). The mean m and standard deviation
s for the %errors affecting the energy gaps are represented by the normal distribution function.
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still underestimates the energy gaps. On the other hand, the
NOGF3 method shows crystal field gaps almost coincident with
the CAHF/CASCI-SO results for the majority of the Tb(III), Dy(III),
and Er(III) complexes in all the range of frequencies. Slightly larger
discrepancies are shown by paah2-2NO3-meOH ligands, where an
average overestimation of the energy gaps of about +40% and
+17% is found for Tb(III) and Dy(III) ions, respectively, and an
underestimation of about �26% for the Er(III) metal. Differently,
the NOGF3 strategy does not lead to a significant improvement of
the crystal field energies of all Ho(III) complexes.

We also note that Dy-trensal and Er-trensal show very
different behaviours. On the one hand, the Dy(III) system is
accurately reproduced by the NOGF3 method both in the low
and high energy ranges. On the other hand, NOGF3 for Er-
trensal shows quite large discrepancies with the CAHF/CASCI-
SO energies, especially for the levels above 400 cm�1, leading to
a large underestimation of the NOGF3 crystal field gaps when
compared with the fully interacting CAHF/CASCI-SO results.

Besides the crystal field energy spectrum, we also tested
the proposed methods for the calculation of the magnetic

Fig. 4 Graphical representation of the crystal field levels within the ground spin–orbit multiplet 5I8 of different Ho(III) complexes, estimated at the CAHF/
CASCI-SO level on the whole system (y axis) versus the different approximations presented in this work (x axis). The mean m and standard deviation s for
the %errors affecting the energy gaps are represented by the normal distribution function.
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properties. In particular, in Tables 1 and 2 we report the
principal values of the g tensor for the ground and first excited
pseudo-Kramers/Kramers doubles (KD) for Tb(III)/Dy(III) com-
plexes, estimated via different approximations. From the tables,
the discrepancies between the NOGF3 and CAHF/CASCI-SO
results for the ground KDs never exceed 1.5% for all the
Tb(III) and Dy(III) systems. A very good agreement is also found
in the orientation of the main magnetic axis, where the angle
between the axes estimated by the NOGF3 and CAHF/CASCI-SO

methods is in all cases smaller than 8 degrees, see Tables 3 and 4.
Larger discrepancies are observed for the first excited KDs, where
now the g-tensor calculated at the NOGF3 level is affected by
errors of about 5%/10%, and the angles of the main magnetic axes
are between 5 and 15 degrees, with the exception of acac3-
dpq (221), acac3-dppz (241), tta3-phen (391), and hfac3-glyme
(211) ligands for Tb(III), and the tta3bipy ligand for Dy(III).

All results presented here clearly show that our proposed
NOGF methodologies for the description of non-covalent

Fig. 5 Graphical representation of the crystal field levels within the ground spin–orbit multiplet 4I15/2 of different Er(III) complexes, estimated at the
CAHF/CASCI-SO level on the whole system (y axis) versus the different approximations presented in this work (x axis). The mean m and standard deviation
s for the %errors affecting the energy gaps are represented by the normal distribution function.
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crystal field interactions in lanthanide complexes perform
significantly better than the FAIMP methods of equivalent
quality, and in fact, quite remarkably, they often manage to
reproduce the fully interacting results obtained via CAHF/
CASCI-SO to an unexpected degree of accuracy. To appreciate
the meaning of these results, it is important to remember
that the CAHF/CASCI-SO and CASSCF/SI-SO methods, while
neglecting the dynamical correlation between metal and ligand
electrons, do provide a mean-field description of metal–ligand
charge-transfer excitations, and hence of covalency effects, via
the refinement of non-redundant active-to-virtual and inactive-
to-active orbital rotations carried out during the orbital opti-
misation process (in other words, via the optimisation of
orbitals containing a small degree of metal–ligand hybridisation).
On the other hand, FAIMP and NOGF by definition do not

formally account for charge transfer processes between different
groups; hence they are formally incapable of describing any
metal–ligand interactions other than non-covalent interactions.
Thus two points of discussion immediately arise from these
results.

First, the observation that NOGF performs consistently
better than the FAIMP version of equivalent quality would seem
to suggest that in NOGF, the process of building antisym-
metrised product functions from non-orthogonal wave func-
tions associated with the single groups, and of producing linear
combinations of such product functions to form the eigenstates
of the first-order degenerate perturbation theory interaction
Hamiltonian, can lead to a recovery of some degree of effective
metal–ligand hybridisation, as much as it is necessary to
ensure orthogonality between different orbitals in an effective

Table 1 g tensor values for the two lowest lying pseudo-Kramers doublets (KD) within the ground spin–orbit multiplet 7F6 of different Tb(III) complexes

CAHF/CASCI-SO FAIMP1 FAIMP2 FAIMP3 NOGF1 NOGF2 NOGF3

acac3-2H2 O KD1 17.578 +0.143 �0.575 +0.054 +0.006 �0.567 +0.100
KD2 17.061 �2.928 �5.403 �3.722 �3.454 �3.404 �2.489

acac3-dpq KD1 17.335 �0.356 +0.321 +0.455 �0.358 �0.201 +0.072
KD2 13.189 �0.573 +0.687 +1.089 �0.862 �0.102 +0.664

acac3-dppz KD1 17.620 �0.890 +0.077 +0.251 �2.756 �0.061 +0.143
KD2 17.109 �4.348 �3.384 �2.556 �6.072 �2.372 �1.655

acac3-phen KD1 17.463 �0.109 +0.357 +0.392 �0.129 +0.055 +0.187
KD2 14.755 �1.748 �0.304 �0.228 �1.401 �0.574 �0.286

pc2
� KD1 17.918 �0.472 +0.020 �0.038 +0.019 +0.020 +0.002

KD2 14.546 +1.543 +0.310 +0.180 +0.358 +0.407 +0.210
paah2-2NO3-meOH KD1 17.772 �0.316 +0.146 +0.157 +0.039 +0.137 +0.149

KD2 15.199 +0.746 �0.392 �0.382 �0.167 �0.144 �0.197
tta3-bipy KD1 17.759 �1.175 +0.128 +0.173 �0.822 +0.027 +0.095

KD2 15.569 �3.282 �0.595 �0.661 �0.583 �1.355 �0.902
tta3-phen KD1 17.608 �0.217 +0.138 +0.255 �0.645 �0.039 +0.097

KD2 13.736 +0.636 +0.424 +0.858 �0.973 �0.421 +0.448
tfpb3-dppz KD1 17.484 �0.285 +0.057 +0.341 �1.459 �0.147 +0.100

KD2 12.229 +1.537 +1.191 +2.290 +0.038 �0.394 +0.996
hfac3-glyme KD1 17.630 �1.596 �0.061 +0.168 �1.774 �0.144 +0.035

KD2 13.774 �2.114 �0.427 +0.574 �2.462 �1.070 �0.029

Table 2 Main g tensor values for the two lowest lying Kramers doublets (KD) within the ground spin–orbit multiplet 6H15/2 of different Dy(III) complexes

CAHF/CASCI-SO FAIMP1 FAIMP2 FAIMP3 NOGF1 NOGF2 NOGF3

acac3-2H2 O KD1 19.471 +0.380 �0.276 +0.054 �0.627 �0.127 +0.009
KD2 15.549 +1.647 �0.467 +0.465 �0.141 �0.564 +0.123

acac3-dpq KD1 19.219 �0.038 +0.459 +0.517 +0.229 +0.152 +0.275
KD2 16.230 +0.288 +0.096 +0.354 +0.000 �0.011 +0.267

acac3-dppz KD1 19.366 +0.311 +0.131 +0.381 �0.817 �0.045 +0.159
KD2 15.369 +1.292 +0.784 +1.460 �2.917 �0.063 +0.690

acac3-phen KD1 19.344 +0.242 +0.310 +0.390 �0.203 +0.053 +0.192
KD2 15.701 +0.308 +0.809 +1.034 +0.247 +0.414 +0.669

pc2
� KD1 17.490 +2.413 +2.411 +2.410 +0.993 +0.133 +0.283

KD2 14.690 +2.465 +2.504 +2.496 +5.126 +1.678 +1.657
paah2-2NO3-meOH KD1 19.592 �0.391 +0.273 +0.292 +0.162 +0.138 +0.193

KD2 16.490 +0.636 +0.648 +0.680 +0.584 +0.338 +0.501
tta3-bipy KD1 19.576 �0.224 +0.131 +0.279 �0.616 +0.073 +0.200

KD2 15.102 +3.354 +1.860 +2.120 �0.869 +2.047 +2.495
tta3-phen KD1 19.485 +0.296 +0.263 +0.317 �0.079 +0.130 +0.224

KD2 15.674 +2.944 +1.249 +1.305 +1.226 +1.038 +1.158
tfpb3-dppz KD1 19.296 +0.190 +0.363 +0.504 �0.270 +0.031 +0.207

KD2 14.549 +4.845 +2.015 +2.388 �1.588 +1.190 +1.883
hfac3-glyme KD1 19.450 +0.336 +0.160 +0.293 �0.278 +0.086 +0.230

KD2 15.930 �3.308 +0.548 +0.889 +0.532 +0.522 +0.789
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orbital-delocalised description leading to equivalent results.
The minimal hybridisation required between localised non-
orthogonal orbitals within an orthogonalisation process can be
considered as a component of covalency as described by an
orthogonal and hybridised basis, accounting for some charge
transfer processes between metal-centered and ligand-centered
orbitals. One should also consider that a rather significant
difference between NOGF and FAIMP methods is not fully
unexpected, given that non-orthogonality makes the matrix

elements of the electrostatic Hamiltonian between group
product functions significantly more complex and rich in
information about group–group interactions with respect to
the effective matrix elements of the FAIMP method, where
the strong orthogonality constraint makes the Hamiltonian
describing the interaction between metal and ligands eqn (23)
significantly simpler than the full non-orthogonal results of the
NOGF method, eqn (48) and (49). After all, FAIMP can be
considered as an approximation to the full NOGF method, hence
bound to lead to a poorer performance.

Second, the observation that, generally speaking, the NOGF3
approach appears to reproduce to a high degree of accuracy
the fully interacting CAHF/CASCI-SO results suggests that fully-
interacting multiconfigurational ab initio methods ignoring the
dynamical correlation, such as CAHF/CASCI-SO or CASSCF/
SI-SO, lead to a description of the Ln(III)–ligand interactions
that is strongly dominated by intermolecular interactions, and
thus probably tend to underestimate covalency effects, so much
so that for most systems explored here the mean field covalency
effects captured by the molecular orbital optimisation process
are captured also by our non-covalent NOGF methods.

However, we have also exposed here a few cases where even
our best NOGF approach displays some difficulties in recover-
ing the fully interacting CAHF/CASCI-SO results. We can iden-
tify here a major systematic trend in these more difficult cases.
We note in fact that, generally speaking, the NOGF methodo-
logy tends to perform much better for complexes of Dy(III) and
Tb(III) ions, rather than for equivalent complexes of Er(III) and
Ho(III) ions. We provide here a rationalisation of this behaviour
in terms of the multipolar expansion of the 4f-charge distribu-
tions associated with the MJ states of a spin–orbit multiplet
with a total angular momentum quantum number J. As shown
in fact first by Sievers,10 the asphericity of the 4f charge density
distribution, rJ,MJ(y, f), can be expanded in terms of just three
spherical harmonics Ckq(y, f), corresponding to the 4f multi-
polar expansion of the charge density associated with a given
state MJ as in eqn (70)

rJ,MJ(y,f) = A2,MJC20(y, f) + A4,MJC40(y,f) + A6,MJC60(y, f),
(70)

where A2,MJ is the quadrupole coefficient for the state MJ, while
A4,MJ and A6,MJ are the hexadecapole and hexacontadecapole
coefficients, respectively, for the same state. In the approxi-
mation that the J-multiplet is dominated by a single Russell–
Saunders term with specific values of the L and S total angular
momentum and spin quantum numbers (known to be a very
good approximation for complexes of trivalent lanthanide
ions), the three multipolar coefficients can be exactly
calculated as

Ak;MJ
¼ ð�1ÞJ�MJ

J k J

�MJ 0 MJ

 !
LSJ Ck

�� ���� ��LSJ� �
: (71)

Eqn (71) shows that the magnitude of a given multipolar term
describing the charge density of different crystal field states
for a given lanthanide, aside from a simple Wigner 3j symbol

Table 3 Main magnetic axes for the two lowest lying pseudo-Kramers
doublets (KD) within the ground spin–orbit multiplet 7F6 of different Tb(III)
complexes: angle (in degrees) between the axes estimated by the different
methods proposed in this paper and the ab initio computation on the
whole systems at the CAHF/CASCI-SO level

FAIMP1 FAIMP2 FAIMP3 NOGF1 NOGF2 NOGF3

acac3-2H2O KD1 75 36 23 81 6 8
KD2 59 27 32 43 37 22

acac3-dpq KD1 45 14 19 26 4 7
KD2 40 5 6 16 10 6

acac3-dppz KD1 89 18 20 66 3 6
KD2 84 39 40 57 23 24

acac3-phen KD1 57 12 13 24 2 4
KD2 31 20 20 30 15 15

pc2
� KD1 17 5 9 3 0 2

KD2 17 5 4 7 0 9
paah2-2NO3-
meOH

KD1 10 9 9 7 5 6
KD2 86 11 12 1 7 9

tta3-bipy KD1 81 8 8 72 1 1
KD2 38 35 41 61 32 39

tta3-phen KD1 42 7 9 19 2 3
KD2 58 16 11 50 15 9

tfpb3-dppz KD1 62 8 10 12 3 3
KD2 78 3 9 53 5 5

hfac3-glyme KD1 89 6 8 46 2 3
KD2 90 21 20 41 24 21

Table 4 Main magnetic axes for the two lowest lying Kramers doublets
(KD) within the ground spin–orbit multiplet 6H15/2 of different Dy(III)
complexes: angle (in degrees) between the axes estimated by the different
methods proposed in this paper and the ab initio computation on the
whole systems at the CAHF/CASCI-SO level

FAIMP1 FAIMP2 FAIMP3 NOGF1 NOGF2 NOGF3

acac3-2H2O KD1 75 11 5 28 2 2
KD2 73 8 2 49 2 5

acac3-dpq KD1 51 15 15 18 6 6
KD2 43 12 11 13 10 11

acac3-dppz KD1 86 10 11 11 2 3
KD2 83 7 9 16 4 8

acac3-phen KD1 70 14 13 19 6 5
KD2 23 15 18 9 8 13

pc2
� KD1 12 9 9 21 2 4

KD2 4 9 10 16 5 6
paah2-2NO3-
meOH

KD1 37 4 3 2 2 2
KD2 28 1 1 14 0 0

tta3-bipy KD1 85 15 19 9 4 7
KD2 79 36 32 62 24 25

tta3-phen KD1 78 19 16 20 6 6
KD2 45 23 23 24 13 15

tfpb3-dppz KD1 89 16 18 10 4 5
KD2 50 22 21 30 9 12

hfac3-glyme KD1 73 14 16 19 6 8
KD2 39 16 22 14 10 16
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differentiating different MJ states within the same multiplet, is
essentially determined by the reduced matrix element
hLSJ||Ck||LSJi, for which an expression can be found e.g. in ref.
10. The direct calculation of this reduced matrix element deter-
mining the magnitude of the quadrupolar component of the
charge density (k = 2), for ions Tb (L = 3, S = 3, J = 6), Dy (L = 5, S =
5/2, J = 15/2), Ho (L = 6, S = 2, J = 8), and Er (L = 6, S = 3/2), gives

hLSJ8C28LSJi = �0.42(Tb); �0.40(Dy); �0.16(Ho); 0.16(Er).
(72)

Furthermore, within a simple point charge model, we can
easily show that the strength of the electrostatic interactions
between metal and ligands in lanthanides is strongly domi-
nated by the quadrupolar term. This can be shown in the
following manner. If a ligand charge is at a distance R from
the lanthanide ion, the strength of the electrostatic potential
generated at distance R by the 4f-multipole of order k associated
with the 4f charge density distribution can be estimated as

rk
� �
Rkþ1. For a typical metal–ligand distance of R = 5a0(2.65 Å), and

using the radial multipoles tabulated for all trivalent
lanthanide ions by Edvardsson and Klintenberg,69 this leads
to rather small ratios between the hexadecapolar (k = 4) and
quadrupolar (k = 2) crystal field strengths of
r4
� �

=R5

r2h i=R3
¼ 0:097ðTbÞ; 0:093ðDyÞ; 0:089ðHoÞ; 0:087ðErÞ, and to

even smaller ratios between hexacontadecapolar (k = 6) and
quadrupolar terms for all four ions:
r6
� �

=R7

r2h i=R3
¼ 0:021ðTbÞ; 0:020ðDyÞ; 0:018ðHoÞ; 0:017ðErÞ, which is

evidence that metal–ligand electrostatics are dominated by the
k = 2 quadrupolar interactions (quadrupole–charge interactions
in this simple example).

This simple argument thus shows that intermolecular electro-
static interactions between the ligands and the lanthanide ions in
a complex are dominated by quadrupolar terms, and thus are
much stronger in Dy and Tb than in Ho and Er, where the strength
of the quadrupolar terms of the 4f charge density expansion
calculated in eqn (72) is found to be less than half the magnitude
of those found for Dy and Tb. The fact that in Er and Ho the
interactions between metal and ligands will be less strongly
dominated by pure electrostatics provides a rationalisation of
our finding that ab initio non-covalent approaches like NOGF have
more difficulties in providing a satisfactory description of metal–
ligand interactions with respect to methods like CAHF/CASCI-SO,
in which covalent ligand–metal interactions can be partially
captured via optimisation of ligand–metal orbital hybridisation.

At this time, we were not able to rationalise the relatively
poor performance of the NOGF methods for Dy(III) and Tb(III)
for the single case of the paah2-2NO3-meOH ligands.

Conclusions

We presented a novel multiconfigurational non-orthogonal
group function (MC-NOGF) approach for the calculation of

the crystal field energies and magnetic properties of trivalent
lanthanide complexes. The novel MC-NOGF approach has been
implemented in the ab initio program Computational Emulator
of Rare Earth Systems (CERES).35,45 By direct comparison of two
different fragment approaches of the crystal field energies of 44
complexes, namely the FAIMP and the here proposed MC-
NOGF, we showed that the MC-NOGF model offers a better
performing approach to an ab initio non-covalent description of
metal–ligand interactions in trivalent lanthanide complexes.
This suggests that many bonding situations in lanthanide
complexes, especially involving lanthanide ions whose 4f
charge density has a strong quadrupolar component such as
Tb(III) and Dy(III), can be satisfactorily described in terms of
‘‘intermolecular interactions’’ between ligands and 4f elec-
trons, a fact that could be used not only to better understand
the chemistry of 4f coordination related to different ligands,
but also to design more efficient and localised ab initio meth-
ods for the inclusion of dynamical correlation effects, which
could focus on the description of those excitations that are by
definition absent from NOGF strategies.
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46 P.-O. Löwdin, J. Chem. Phys., 1950, 18, 365–375.
47 W. J. Carr, Phys. Rev., 1953, 92, 28–35.
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