Issue 1, 2022

Nature of hydride and halide encapsulation in Ag8 cages: insights from the structure and interaction energy of [Ag8(X){S2P(OiPr)2}6]+ (X = H, F, Cl, Br, I) from relativistic DFT calculations

Abstract

Unraveling the different contributing terms to an efficient anion encapsulation is a relevant issue for further understanding of the underlying factors governing the formation of endohedral species. Herein, we explore the favorable encapsulation of hydride and halide anions in the [Ag8(X){S2P(OPr)2}6]+ (X = H, 1, F, 2, Cl, 3, Br, 4, and, I, 5) series on the basis of relativistic DFT-D level of theory. The resulting Ag8–X interaction is sizable, which decreases along the series: −232.2 (1) > −192.1 (2) > −165.5 (3) > −158.0 (4) > −144.2 kcal mol−1 (5), denoting a more favorable inclusion of hydride and fluoride anions within the silver cage. Such interaction is mainly stabilized by the high contribution from electrostatic type interactions (80.9 av%), with a lesser contribution from charge-transfer (17.4 av%) and London type interactions (1.7 av%). Moreover, the ionic character of the electrostatic contributions decreases from 90.7% for hydride to 68.6% for the iodide counterpart, in line with the decrease in hardness according to the Pearson's acid–base concept (HSAB) owing to the major role of higher electrostatic interaction terms related to the softer (Lewis) bases. Lastly, the [Ag8{S2P(OPr)2}6]2+ cluster is able to adapt its geometry in order to maximize the interaction towards respective monoatomic anion, exhibiting structural flexibility. Such insights shed light on the physical reasoning necessary for a better understanding of the different stabilizing and destabilizing contributions related to metal-based cavities towards favorable incorporation of different monoatomic anions.

Graphical abstract: Nature of hydride and halide encapsulation in Ag8 cages: insights from the structure and interaction energy of [Ag8(X){S2P(OiPr)2}6]+ (X = H−, F−, Cl−, Br−, I−) from relativistic DFT calculations

Supplementary files

Article information

Article type
Paper
Submitted
17 Sep 2021
Accepted
23 Nov 2021
First published
23 Nov 2021

Phys. Chem. Chem. Phys., 2022,24, 452-458

Nature of hydride and halide encapsulation in Ag8 cages: insights from the structure and interaction energy of [Ag8(X){S2P(OiPr)2}6]+ (X = H, F, Cl, Br, I) from relativistic DFT calculations

R. Guajardo Maturana, A. O. Ortolan, P. L. Rodríguez-Kessler, G. F. Caramori, R. L. T. Parreira and A. Muñoz-Castro, Phys. Chem. Chem. Phys., 2022, 24, 452 DOI: 10.1039/D1CP04249A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements