Issue 35, 2022

Analysis of endogenous metabolites using multifunctional derivatization and capillary RPLC-MS

Abstract

Heterogeneity in metabolite structure and charge state complicates their analysis in electrospray mass spectrometry (ESI-MS). Complications such as diminished signal response and quantitation can be reduced by sequential dual-stage derivatization and capillary RP LC-ESI-MS analysis. Our sequential dual-stage chemical derivatization reacts analyte primary amine and hydroxyl groups with a linear acyl chloride head containing a tertiary amine moiety. Analyte carboxylate groups are then coupled to a linear amine tag with a tertiary amine moiety. This increase in the number of tags on analytes increases analyte proton affinity and hydrophobicity. We derivatized 250 metabolite standards which on average improved signal to noise by >44-fold, with an average limit of detection of 66 nM and R2 of 0.98. This system detected 107 metabolites from 18 BAECs, 111 metabolites from human urine, and 153 from human serum based on retention time, exact mass, and MS/MS matches from a derivatized standard library. As a proof of concept, aortic endothelial cells were treated with epinephrine and analyzed by the dual-stage derivatization. We observed changes in 32 metabolites with many increases related to energy metabolism, specifically in the TCA cycle. A decrease in lactate levels and corresponding increase in pyruvate levels suggest that epinephrine causes a movement away from glycolytic reliance on energy and a shift towards the more efficient TCA respiration for increasing energy.

Graphical abstract: Analysis of endogenous metabolites using multifunctional derivatization and capillary RPLC-MS

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2022
Accepted
08 Aug 2022
First published
16 Aug 2022

Anal. Methods, 2022,14, 3397-3404

Analysis of endogenous metabolites using multifunctional derivatization and capillary RPLC-MS

J. Agongo, M. Armbruster, C. Arnatt and J. Edwards, Anal. Methods, 2022, 14, 3397 DOI: 10.1039/D2AY01108E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements