Issue 12, 2022

Sequential quantification of blood and diluent using red cell sedimentation-based separation and pressure-induced work in a microfluidic channel

Abstract

The erythrocyte sedimentation method has been widely used to detect inflammatory diseases. However, this conventional method still has several drawbacks, such as a large blood volume (∼1 mL) and difficulty in continuous monitoring. Most importantly, image-based methods cannot quantify RBC-rich blood (blood) and RBC-free blood (diluent) simultaneously. In this study, instead of visualizing interface movement in the blood syringe, a simple method is proposed to quantify blood and diluent in microfluidic channels sequentially. The hematocrit was set to 25% to enhance RBC sedimentation and form two layers (blood and diluent) in the blood syringe. An air cavity (∼300 μL) inside the blood syringe was secured to completely remove dead volumes (∼200 μL) in fluidic paths (syringe needle and tubing). Thus, a small blood volume (Vb = 50 μL) suctioned into the blood syringe is sufficient for supplying blood and diluent in the blood channel sequentially. The relative ratio of blood resident time (RBC-to-diluent separation) was quantified using λb, which was obtained by quantifying the image intensity of blood flow. After the junction pressure (Pj) and blood volume (V) were obtained by analyzing the interface in the coflowing channel, the averaged work (Wp [Pa mm3]) was calculated and adopted to detect blood and diluent, respectively. The proposed method was then applied with various concentrations of dextran solution to detect aggregation-elevated blood. The Wp of blood and diluent exhibited substantial differences with respect to dextran solutions ranging from Cdex = 10 to Cdex = 40 mg mL−1. Moreover, λb did not exhibit substantial differences in blood with Cdex > 10 mg mL−1. The variations in λb were comparable to those of the previous method based on interface movement in the blood syringe. In conclusion, the WP could detect blood as well as diluents more effectively than λb. Furthermore, the proposed method substantially reduced the blood volume from 1 mL to 50 μL.

Graphical abstract: Sequential quantification of blood and diluent using red cell sedimentation-based separation and pressure-induced work in a microfluidic channel

Article information

Article type
Paper
Submitted
22 Dec 2021
Accepted
25 Feb 2022
First published
25 Feb 2022

Anal. Methods, 2022,14, 1194-1207

Sequential quantification of blood and diluent using red cell sedimentation-based separation and pressure-induced work in a microfluidic channel

Y. J. Kang, Anal. Methods, 2022, 14, 1194 DOI: 10.1039/D1AY02178H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements