A visible-light-responsive molecularly imprinted polyurethane for specific detection of dibenzothiophene in gasoline†
Abstract
Dibenzothiophene and its derivatives in gasoline and diesel would release sulfur oxides during combustion, and this is harmful to human health and the environment. This paper reports a method based on a visible-light-responsive molecularly imprinted polyurethane (VMIPU) to monitor trace dibenzothiophene in gasoline. The VMIPU was prepared by a polyaddition reaction using N,N-bis-(2-hydroxyethyl)-4-phenylazoaniline as the functional monomer, dibenzothiophene as the template molecule, diphenylmethane diisocyanate as the crosslinker and castor oil as the chain extender. The VMIPU showed good visible-light-response and specific adsorption for dibenzothiophene. The trans → cis photoisomerization rate constant of azobenzene chromophores in the VMIPU shows a linear relationship with the dibenzothiophene concentration in the range of 0–20 μmol L−1. This was used to estimate trace dibenzothiophene in spiked gasoline with recoveries of 95.7–101.0% and relative standard deviations of 7.0–12.7%.