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pre-processing technique†
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The visual detection, classification, and differentiation of cancers within tissues of clinical patients is an

extremely difficult and time-consuming process with severe diagnosis implications. To this end, many

computational approaches have been developed to analyse tissue samples to supplement histological

cancer diagnoses. One approach is the interrogation of the chemical composition of the actual tissue

samples through the utilisation of vibrational spectroscopy, specifically Infrared (IR) spectroscopy.

Cancerous tissue can be detected by analysing the molecular vibration patterns of tissues undergoing IR

irradiation, and even graded, with multivariate and Machine Learning (ML) techniques. This publication

serves to review and highlight the potential for the application of infrared microscopy techniques such as

Fourier Transform Infrared Spectroscopy (FTIR) and Quantum Cascade Laser Infrared Spectroscopy

(QCL), as a means to improve diagnostic accuracy and allow earlier detection of human neoplastic

disease. This review provides an overview of the detection and classification of different cancerous tissues

using FTIR spectroscopy paired with multivariate and ML techniques, using the F1-Score as a quantitative

metric for direct comparison of model performances. Comparisons also extend to data handling tech-

niques, with a provision of a suggested pre-processing protocol for future studies alongside suggestions

as to reporting standards for future publication.

Introduction

Infrared spectroscopy, a specific method of vibrational spec-
troscopy, is the quantitative interrogation of a sample using
infrared radiation to stimulate transitions between molecular
vibrational energy states. These vibrations are characteristic of
the molecule itself, giving molecules their own spectral finger-
print.1 This means that, in theory, chemical compositions of
complex biological samples, with their unique molecular
make-up, can be identified as a superposition of all the indi-
vidual spectral fingerprints, unique for each chemical compo-
sition.2 In layman terms, this is achieved by directing an infra-

red beam through a biological sample and measuring the
signal that transmits through it. In principle, cancerous tissue
will have a different superposition of spectral fingerprints to
that of normal tissue. These spectra have been shown to be
sufficiently different for a machine learning algorithm to
differentiate between, not only cancerous and non-cancerous
tissue, but also between the cancer types, the grade of cancer,
and the stage of cancer.3–5 This enables researchers to infor-
matively analyse tissue samples for the quantitative detection
and classification of a range of diseases and cancers.6–9

Infrared spectroscopy applied to tissue is normally con-
ducted using a Fourier transform infrared (FTIR) spectrometer
coupled to an infrared microscope and covers the wavenumber
range 4000–800 cm−1. This range encompasses the vibrational
frequencies of numerous organic functional groups that are
key in differentiating chemical compounds. More recently
specially designed infrared microscopes using tuneable
Quantum Cascade Laser sources have been used that span a
more limited region of the infrared spectrum, typically
∼1900–900 cm−1 that covers the, so-called, fingerprint
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region.10 The QCL based systems, while limited in spectral
range, offer the possibility of discrete frequency imaging
whereby just a few key wavenumbers can be probed, potentially
allowing very rapid sampling.11 The choice of technique,
therefore, will come with certain experimental biases that may
also restrict the information obtained from a biological
sample.

Effective application of IR spectroscopy can also be limited
due to the substrate or slide upon which samples are loaded.
While most tissue samples used in cancer diagnoses are pro-
cessed from formalin-fixed, paraffin-embedded (FFPE) tissues
onto glass slides, the opacity of glass over much of the mid-IR
range limits the data obtainable,12–15 causing many studies to
require the use of the expensive and fragile IR transparent sub-
strates such as calcium or barium fluoride (CaF2 and BaF2
respectively) crystal slides. This increased cost has serious
ramifications for those wishing to apply IR spectroscopy on a
large scale in a clinical setting. Infrared spectroscopic classifi-
cation studies upon haematoxylin and eosin (H&E) stained
tissue samples on glass slides have started to be evaluated but
it remains to be seen whether conducting multivariate and ML
analyses on the current standard of biological tissue samples
will become more widely applicable.16,17

There are many drivers for the application of IR spec-
troscopy coupled with analytical techniques such as multi-
variate analysis or ML, in the classification of cancers.
Primarily, pathologist concordance has been observed to vary
greatly across different stages of cancer, with concordances
amongst single pathologist diagnoses ranging from 48–90%,
and concordance rates of about 80% in expert pathologist con-
sensus studies,18–22highlighting the beneficial impact of
machine learning to reduce inter and intra pathologist varia-
bility. In cases where lesions are detected, IR spectroscopy can
measure the chemical presence of these lesions before they
become visible histologically, providing the possibility of
early-stage cancer detection.23 The scalability of many of the
methods mentioned also provide a cost-effective method for
cancer detection in studies with large sample numbers.

Multivariate analysis refers to techniques/models that pri-
marily utilise multivariate statistics for discrimination, such as
principal component analysis (PCA) and linear discriminant
analysis (LDA).24,25 Alternatively, machine learning loosely
refers to techniques that utilise learning algorithms to build
models that are then used for discrimination/decision making
processes.26 While there are many studies on the detection
and classification of cancerous tissue using the pairing of IR
with multivariate and Machine Learning (ML) techniques,
there is very little comparative evaluation of these methods.7

There also exists low levels of concordance between publi-
cations for performance metric presentation and data hand-
ling and pre-processing techniques applied. A well-trained
machine learning classifier works continuously without super-
vision, with the potential for hardware upgrades. The model
can be exported/replicated to multiple machines which can
run in parallel. Simple diagnoses can be recorded by the
machine learner, allowing the human pathologist to direct

resources towards complex diagnoses with ambiguous prob-
abilities thus saving both time and money.

While IR instrumentation and data collection are well estab-
lished, there is no “gold standard” for the chemometric tech-
nique used when attempting to tackle classification problems
encountered with FTIR (or QCL based) spectral datasets. It
could be argued that there can be no true set-defined “gold
standard”, given that the best suited analytical techniques can
vary depending on the underlying data being analysed and the
purpose of the study. This is not to say however that there
cannot be structured guidance on how best to approach
certain research problems. There is also no general agreement
on the preparation protocol of the samples for IR spectroscopy,
the slides upon which samples are processed, the collection
method of the spectral datasets, the specific data to be ana-
lysed and their respective handling, and the classification
algorithms best suited for the relevant study. This lack of con-
sistency might be caused by the varying suitability of the
preparation protocol dependent on the study tissue samples
and research objective. For example, the spectral “fingerprint”
region found below 1800 cm−1 absorbance is not measurable
for tissue samples presented on common silica glass, whereas
this region is measurable for tissues on other slides such as
calcium/barium fluoride. Studies conducted on either slide
type will differ in their analyses. In addition, the spectra of
different tissues may also be impacted by distortion scattering
effects such as resonant Mie scattering that require treatment
before analysis.27

While developing a standard for the chemometric tech-
niques may prove difficult, the development of a “gold stan-
dard” for the presentation of model/algorithm results and per-
formance metrics is a reasonable endeavour. All classification
studies share commonality in the use of models to predict
specific class memberships, with the same measures of per-
formance available, irrespective of the classification method,
or data being classified. With adequate labelling of samples,
be it at a pixel level or overall tissue assignment, the study
authors have the capacity to produce quantitative metrics that
can be used as a basis of model validation internally, and com-
parison between alternative studies externally. While authors
have access to all these common performance metrics, they
vary in how they report the performance of their models and
which of the metrics to use. This has knock on effects for the
comparison of models in this area of research. It is common
for authors to favour the production of visually pleasing
graphs to present model performance metrics, foregoing any
quantitative presentation of results. To directly compare the
models presented in current literature, a single performance
metric can be computed from the studies’ results. This metric
is the F1-Score, which has been applied in the field of query
classification, machine learning, and natural language
processing.28–31

The F1-Score can be calculated directly from a confusion
matrix, or through rebuilding a confusion matrix using the
sensitivity and specificity metrics. This can be an effortless
process in instances of two class classifications, or more
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complex in multiple class problem areas. The scope of this
comparative study is twofold: to conduct cancer classification
using spectroscopic techniques across different tissues, con-
cisely summarising key study information such as targeted
wavenumber ranges (hereby referred to as a range in cm−1),
and how each study measured relative performance metrics to
review their work. In addition, this review will provide a
method of direct model comparison through the calculation of
the F1-Score for each study. In instances where an F1-Score cal-
culation is not possible, due to insufficient data or inadequate
reporting within the study, a note will be placed in lieu of a
score. This review will highlight the importance of establishing
a common standard for the reporting of model performance
metrics, providing examples of high and low tier reporting, to
encourage future authors to report in ways that can be directly
compared, without the need of such metric calculations such
as the F1 score.

Many of the studies in this review focus on the classifi-
cation between healthy and cancerous tissue sample groups.
While this approach may be suitable for high throughput
screening or indeed post diagnosis, quality control, it might
not be sufficient to assist in diagnosis beyond simply indicat-
ing the presence of diseases such as cancer. It can be argued
that the classification between cancerous and healthy samples
is too simple, and that classifying the complexity of the
unhealthy tissue types is of greater importance e.g., the distinc-
tion between inflammation and necrosis in a particular tissue.
With regards to the F1-Score, akin to other performance
metrics, a simpler classification problem will often obtain
high scores. The problem simplicity must also be considered
alongside performance metrics. Classifying the subclasses
such as disease type and cancer grading within the sample can
provide much greater information for the users of the classi-
fiers. While studies that report on the correct classification of
cancer compared to healthy patient tissues showcase the
potential of spectroscopy and ML techniques, studies that pro-
gress beyond two group classifications are more challenging
but will be useful to augment diagnosis in a clinical setting. It
is expected therefore, that future studies will focus on the
classification of disease subtypes and grading beyond the pres-
ence of the disease alone.

The studies have been tabulated in Table 1 to summarise
several features including the method(s) used, the different
types of cancerous tissue(s) being classified, the original per-
formance metric utilised when reporting results, alongside the
paper’s relevant F1-Scores. Performance metrics are reported
as either a confusion matrix (CM), sensitivity and specificity
metrics (S&S), or percentage of correct classification (%CC).
The prediction methods were tabulated to reflect what method
is being scored: “Main” denoted a single classification level, in
example cancerous against non-cancerous, with other labels
reflecting which model/level is used as reported in the relevant
study. Additionally, Table 2 is provided to highlight key data
handling steps for each study including the data range ana-
lysed and key pre-processing steps. Many levels of model per-
formance are reported in our review, indicating that machine

learners are very apt at detecting cancerous tissues. However,
some studies tackle two group classification problems between
non-cancerous and cancerous tissues which are two distinctly
different sets of tissue. These high-performance metrics can
therefore be misleading, as they result in a simple classifi-
cation problem. There are alternative studies that showcase
very effective classifiers that can differentiate between cancer-
ous tissues within entire tissue sections, by sub-categorising
tissue constituents.

The criterion for inclusion in this meta-analysis was cancer
studies that employed the application of ML classification
methods on tissue samples scanned using infrared spec-
troscopy, specifically FT-IR and QCL, with a minimal aim to dis-
criminate between key constituents, including the cancer(s).
The cancers targeted in the studies summarised in this paper
are breast, colon, bladder, liver, lung, ovarian, gastric, and skin.

The F1-Score

The F1-Score, alternatively called the traditional F-measure, is
defined as the harmonic mean of a model’s positive predictive
value (precision) and the recall (sensitivity), considering the
true positive counts alongside that of false positives and false
negatives.32–34 The F1-Score is highest when a model obtains
low false positive and low false negative predictions, reflecting
the model’s accuracy. A comparative worked example of this is
provided in the ESI.† There are extensions of the F1-Score to
provide weights that award more importance to either the pre-
cision or recall, however this is not considered in this review.
From the simplest form of confusion matrix (Fig. 1) the F1-
Score can be predicted as in eqn (1) with the true and false
positive and negative values (TP, FP, TN, FN respectively), or
with the precision and recall given by eqn (2) and (3).

F1 ¼ TP

TPþ 1
2

FPþ FNð Þ
¼ 2 � Precision � Recall

Precisionþ Recall
; F1 [ 0; 1½ �

ð1Þ
where:

Precision ¼ TP
TPþ FP

ð2Þ

and

Recall ¼ TP
TPþ FN

ð3Þ

Calculation of the F1-Score is possible when provided with
sensitivity and specificity, in both simple two class and multi-
class problems. This is done by rebuilding a confusion matrix
that corresponds to those two metrics. In the more complex
multiclass problem areas, Microsoft Excel’s Solver35 is used to
find combinations of predictions that produce the sensitivity
and specificity metrics, as illustrated in Fig. 2. A worked
example of this process is provided as ESI.†

In problems with more than two classes, there are multiple
ways of presenting the F1-Score either individually as numer-
ous scores, or a single score across all groups. Typically, the
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micro and macro averaging can be used to produce a score
that is either biased by class frequency or takes all classes as
having equal importance by calculating a total F1-Score across
all classes or averaging the individual scores obtained at each

class. Additionally in this study the median-F1-Score is pro-
posed, taking the median score across all classes, combatting
the impact of outlier scores overall. The weighted average F1-
Score, an already established and commonly used metric, was

Table 1 Collated list of studies conducting classification of cancers in tissue samples

Method
used Author Classification classes

Performance
metric

Cancer
type

Prediction
method

Macro
– F1

Micro
– F1

Median
– F1

RF Mittal et al.36 Malignant epithelium,
noncancerous epithelium,
stroma, others

CM Breast Main 0.9514 0.9509 0.9583

SVM, CNN Berisha et al.37 Adipocytes, blood, collagen,
epithelium, necrosis,
myofibroblasts

S&S Breast SVM (HD) 0.7443 0.7575 0.7396
CNN (HD) 0.9169 0.9294 0.9404
SVM (SD) 0.5746 0.5478 0.6251
CNN (SD) 0.8015 0.7868 0.7987

RF Mayerich et al.38 Blood, epithelium, collagen,
fibroblasts, myofibroblasts,
lymphocytes, necrosis

S&S Breast Main Insufficient information
available

PLS-DA Verdonck et al.39 Epithelial cells, lymphocytes,
connective tissue, vascular
tissue, erythrocytes

S&S Breast Cell/tissue
type

0.8521 0.8492 0.8813

Epithelial
phenotype

0.9125 0.9125 0.9125

AdaBoost Tang et al.40 Cancerous epithelium,
cancerous stroma, normal
associated tissue epithelium,
normal associated tissue stroma

CM Breast Main 0.8877 0.8890 0.8745

RF Piling et al.42 Model 1: epithelium, stroma,
blood, necrosis

CM Breast Model 1 0.9644 0.9640 0.9650

Model 2: malignant stroma, non-
malignant stroma

Model 2 0.8958 0.896 0.8958

RF Kuepper et al.3 Level 1: Tissue classification S&S Colon Level 1 0.9700 0.9700 0.9700
Level 2: colon cancer grade (1, 2,
3)

Level 2 0.8852 0.8837 0.8557

SVM Hughes et al.44 Transitional cell carcinoma,
stroma, micro-papillary,
lymphocyte rich cells, clear cells

%CC Bladder Main Insufficient information
available

RF Großerueschkamp
et al.46

Level 1: healthy, pathologic.
Level 2: tumour classes. Level 3:
subtypes of lung
adenocarcinoma.

S&S Lung Main Only accuracy values given.

ANN Bird et al.45 Level 1: normal, not normal.
Level 2: small cell lung cancer
(SCLC), not SCLC. Level. 3a/b:
squamous cell carcinomas
(SqCCs), not SqCC Level 4:
adenocarcinomas (ADC), not
bronchiolo-alveolar carcinomas
(BAC)

S&S Lung Main 0.9116 0.9043 0.9441

SVM Akalin et al.47 Normal, small cell lung cancer
(SCLC), non-small cell lung
cancer (NSCLC), squamous cell
carcinomas (SqCCs), and
adenocarcinomas (ADCs).

CM Lung Full spot (a) 0.9219 0.9521 0.9219
Full spot (b) 0.9461 0.9681 0.9461

PCA-LDA,
SPA-LDA,
GA-LDA

Theophilou et al.5 Grouping 1: benign tissue,
borderline tumours, ovarian
carcinoma. Grouping 2:
carcinoma subtypes

CM Ovarian Main Only accuracy values given.

PLS-DA Wald et al.48 Level 1: epithelial cells,
erythrocytes, lymphocytes,
connective tissues.

CM, S&S Skin Level 1 0.9144 0.9130 0.9069

Level 2: melanoma cells,
endothelial cells

Level 2 0.9450 0.9450 0.9450

PLS- DA Wald and
Goormaghtigh49

Melanoma, erythrocytes,
lymphocytes, connective tissues,
necrotic cells, keratinocytes

CM Skin Cell type 0.9671 0.9667 0.9701

PLS-DA Wald et al.50 Dacarbazine responders,
dacarbazine non-responders

CM Skin Dacarbazine
response

0.9565 0.9565 0.9565

KNN, SVM Ghassemi et al.51 Normal adjacent vs cancerous
tissue

CM Gastric
cancer

Unknown 0.8137 0.8137 0.8137
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not used because each study allocates different importance to
their type I and II errors (false positive and negatives respect-
ively), meaning a set value for the positive real factor β (a user
defined weighting) could not be decided upon.

The F1-Score is criticised as being misleading for unba-
lanced classes because the metric ignores the instances of True
Negatives.32 While the impact of the unbalanced classes is mini-
mised in multi-class problems, it may be combatted in two-class
problems through calculation of a secondary F1-Score that incor-
porates the True Negatives in the score calculation as opposed to
the True Positives, an example of which is provided in the ESI.†
This criticism is of importance especially in cases where
instances of misclassification have varied levels of impact.
Additionally, it can be combatted by incorporating the standard
practices proposed in this study i.e. by presenting specificity
metrics alongside the F1-Score to account for the True Negatives.

Classification of cancer in tissue

Reporting of modelling techniques applied to breast cancer
data were generally of a high standard, allowing for calculation
of F1-Scores in all but one instance. The classification of and
differentiation between noncancerous and malignant epi-

thelium is noted as being a potential measure or indicator of
the presence of cancer in humans, resulting in the develop-
ment of a four class Random Forests (RF) classifier to classify
breast tissue sample cells into one of four groups: non-cancer-
ous epithelium, malignant epithelium, stroma, and others.36

The model attained a high range of correct classification rates
(94.17–96.09%) with few instances of false positive/negatives,
corresponding to a high level of F1-Scores.

The use of a Support Vector Machine (SVM) and
Convolutional Neural Network (CNN) were used to determine
whether six major cellular and acellular constituents of breast
biopsy cores could be differentiated i.e. adipocytes, blood, col-
lagen, epithelium, myofibroblasts, and necrosis.37 Applied to
both standard definition (SD) and high definition (HD) data-
sets which differ in the number of co-additions in scanning,
the CNN model outperformed the SVM overall, with the differ-
ences in performance across groups highlighting the ben-
eficial impact of higher quantity data (at the expense of acqui-
sition time).

In a similar vein, a RF method was trained to characterise
breast tissue biopsies for use in supplementing pathologist
diagnostic activities, classifying groups of tissue types that could
be useful for differentiating biomarkers of breast cancer: blood,
epithelium, collagen, fibroblasts, myofibroblasts, lymphocytes,
and necrosis.38 Unfortunately some details are omitted in this
study, such as the pre-processing techniques utilised and the
training and test split quantities for model training. Results are
also not provided in a quantifiable form to be used in the calcu-
lation of F1-Scores, with the sensitivity and specificity results
having to be determined visually. While class receiver operating
characteristic curves are overlaid in a plot, they do not aid in the
interpretation of the results nor the study’s comparability.

Two separate Partial Least Squares Discriminant Analysis
(PLS-DA) models were trained to classify five main cell types

Fig. 1 Simple confusion matrix denoting true and false classification
classes.

Fig. 2 Illustration of how to calculate sensitivity and specificity metrics in a multi-class problem for a confusion matrix of four classes (1). The sensi-
tivity and specificity calculations for class A (2 & 3) and class B (4 & 5) are shown. In each instance the metric is calculated as a division of the sum of
upper shaded/greyed confusion matrix value(s) by the sum of the divisor shaded/greyed confusion matrix value(s).
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present in breast tissue sections, and to differentiate between
normal and breast tumour epithelial cell phenotypes.39 While
the phenotype method of the study produced better F1-Scores
than the five cell type differentiation, this is because of the
easier problem being addressed (tumour versus normal).
While the cell type differentiation model obtained reasonable
scores, the results of ML methods from other studies provide
weight to the argument that the more complex modelling tech-
niques are more apt for the problem of tissue classification.

Given the fragility and high cost of CaF2 and BaF2 slides, it
was rational to determine whether these ML techniques can
still be applied to haematoxylin and eosin (H&E) stained
tissues on glass slides, to differentiate cancerous and non-can-
cerous epithelium and stroma using the AdaBoost
method.40,41 Even with the restricted wavenumber range of
2500–3600 cm−1 high levels of correct classification were
obtained, alongside high F1-Scores. The performance of this
technique was limited by high levels of incorrect classification
for the normal epithelium class, with a 21% misclassification
of total normal epithelium spectra being classified as
cancerous.

The acquisition of spectra using Quantum cascade laser
(QCL) infrared imaging, limited to the lower wavenumber
range of the spectrum (1800–912 cm−1), paired with a RF clas-
sifier was used to accurately differentiate four different histo-
logical classes contained within breast cancer tissue microar-
rays: epithelium, stroma, blood, and necrosis. Additionally, the
successful discrimination between malignant and non-malig-
nant stroma spectra was demonstrated using the same meth-
odology.42 In classifying the four histological classes, excep-
tional F1-Scores were obtained, with the minimum true posi-
tive proportion of classifications being 94.33%. In discriminat-
ing between malignant and non-malignant stroma, a lower
F1-Score was obtained. This is due to a higher level of
misclassification at the non-malignant level, bringing down
the overall score.

In the studies listed in Table 1, there exists only one
focussed on classification of colon cancers, removing the
ability to conduct comparisons within the same tissue type.
The study acts as a continuation of previous works, which
included the development of a RF model to discriminate
between colon tissue tumours and noncancerous tissue con-
stituents such as crypts, lumen of crypts, mucus, mucosal
cells, supporting cells, submucosa, muscle, adipocytes, blood,
lymph follicles, inflammation, and connective tissue.43 The
reported study extends this RF model to include a second RF
classifier to determine the grading of the tumour, from well-
differentiated, moderately differentiated, and poorly differen-
tiated.3 The first level of the model separating the colon
tumour tissue from the non-cancerous constituents achieved
the highest average F1-Score across all three metrics, with no
false positives of tumour tissue reported. The second level is
measured by the congruence between the model output and
the pathologist’s annotations, with the F1-Scores obtained still
being of a high level. It can be argued that the differentiation
of tumour grades is a more difficult endeavour than differen-

tiation between tissue types, leading to a greater appreciation
of the model’s performance.

Similar to the colon cancer group, there is only a single
study focussed on classification of bladder cancer data, and
the results are not presented in a form that can be used to cal-
culate relevant F1-Scores. Five sub-variants of transitional cell
carcinoma (TCC) were subjected to classification by a SVM
method: conventional TCC, stroma, microcapillary, lympho-
cyte rich, and clear cell.44 While achieved overall accuracy was
very high (98.36%), there are no quantified performance
metrics beyond group classification accuracies, and visual
plots detailing the method’s decision boundaries for each pre-
diction. It is suspected that the study would have achieved very
high F1-Scores.

In a study directed at the development of an automated his-
topathological annotation of lung tumour subtypes, a three-
tiered RF classifier was used to separate healthy and cancerous
regions, followed by the identification of tumour classes, with
a final subtyping of adenocarcinoma.4 While the study men-
tions that improved standards of sample collection and charac-
terization result in higher accuracy and reproducibility, the
results presented were not sufficient to calculate any F1-Scores.
The only quantified results were overall classification accuracy
metrics, with no tabulated results, nor sensitivity or specificity
metrics. While false positive rates are mentioned in the discus-
sion of results for the second RF level, the full confusion
matrix detailing all classifications and distribution of these
false positives, are omitted from the paper. While the model-
ling approach appears very promising, without adequate result
metrics there is no basis from which these results can be veri-
fied/compared to other modelling techniques in the same
tissue group.

In an alternative study on lung tissue a multi-level Artificial
Neural Network (ANN) diagnostic algorithm was constructed
to distinguish between normal and cancerous tissue, while
also classifying small cell lung carcinomas (SCLCs), squamous
cell carcinomas (SqCCs), and also adenocarcinomas/bronch-
iolo-alveolar carcinomas (ADCs/BACs).45 The structure of all
levels were set up as binary classifiers, with the first tier discri-
minating between normal and non-normal tissue subtypes
which is equivalent to a cancer against non-cancer classifier.
From the non-normal tissue subtypes the second tier separ-
ated SCLC from non-SCLC spectra, consisting of the SqCC,
ADC, and BAC. The third tier then classified SqCC from non-
SqCC data, containing the remaining ADC and BAC data. This
third tier is conducted twice with two different feature selec-
tion methods, one employed the second derivative of spectra,
the second used feature selection based on PCA scores.
Finally, the fourth tier distinguishes between the ADC and
BAC data. Overall the F1-Scores obtained were exceptional,
with the overall scores being lowered by the final tier,
which had a low specificity metric. It can be concluded that
breaking down the classification of the tissues into tiers of two
class problems is a more effective method than attempting to
train a classifier to discriminate between multiple classes at
once.
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An SVM approach was also trialled to differentiate a
number of different cancer types most frequently encountered
within lung cancer: small-cell carcinoma (SCLC), squamous
cell carcinomas (SqCCs), and adenocarcinomas (ADCs), as well
as normal tissue and regions of necrosis.47 The study was
divided into two main classification problems, firstly the
tissue microarrays were classified at a pixel level, with each
pixel being classed as one of the aforementioned groups. The
second set of classifications were conducted at a full spot level,
providing diagnoses of either normal or cancerous samples.
Unfortunately, it was not possible to rebuild a confusion
matrix for the pixel-based classifications and this could either
be a result of rounding differences in reporting, or problems
with the presentation of sensitivity and specificity metrics. At
the spot level however, the modelling achieved the highest F1-
Scores in the lung tissue studies, albeit potentially due to the
simplicity associated with a binary classification problem.

Of the sole study conducted on ovarian tissue samples,
results were not reported to a standard where F1-Scores could
be calculated and compared. The first of the two listed studies
set out to develop a technique to discriminate between
normal, borderline, and malignant ovarian tumours, while
classifying the ovarian carcinoma subtypes.5 The methods
employed were a collection of different chemometric analyses
in the form of PCA, successive projection algorithm (SPA), and
genetic algorithm (GA). All of these methods were then fol-
lowed by a linear discriminant analysis (LDA). The results of
these techniques are presented in a large table of accuracy
measurements for each carcinoma subtype, with the lowest
scoring predictions coloured green, and highest scoring pre-
dictors coloured in red, causing interpretability issues. Of the
reported results however, some accuracy levels were as high as
100%, indicating that if reported to the same standard as
other papers, the F1-Scores obtained would be expected to be
very high.

All studies on skin cancer classification were conducted by
the same key author using the same modelling technique.
This allows an insight as to how a single modelling tech-
nique’s effectiveness ranges when tackling different classifi-
cations. The classes in each of the works are either conducting
cell type classification, or predicting treatment responses. In
developing a method for the identification of melanoma cells
and lymphocyte subpopulations in lymph node metastasis,
cell type recognition models were trialled in order to classify
the four main histological classes of the tissue samples: epi-
thelial cells, erythrocytes, lymphocytes, and connective tissue.
Following the identification, the endothelial cells were then
sub-classed into melanoma and endothelial cell groups.48 In
discriminating between the four main histological groups and
between the melanoma and endothelial cells, the PLS-DA
method achieved high performance metrics and F1-Scores.
The four-level histological group was limited by a high level of
false negatives associated with lymphocyte and connective
tissue pixels being predicted as epithelial cells. In prior works
by the same author, six cell types commonly found in mela-
noma tumours were the subject of classification: melanoma

cells, erythrocytes, connective tissues (including blood vessel
walls, dermis, and collagen), keratinocytes, lymphocytes, and
necrotic cells.49 Unlike the later study, melanoma cells are not
separated from endothelial cells at a second classification
level. The study reports that over 98% of melanoma cells are
correctly identified using this method, as opposed to the
∼92% identified in the later study. This is reflected in the F1-
Scores, with the earlier study achieving higher scores across all
metrics.

The third study reported on skin cancer deviates from the
standard classification groupings seen in previous studies and
instead of classifying disease presence/state on a pixel level or
providing diagnosis predictions the study frames the groups as
dacarbazine responders and non-responders (chemotherapy
drug used in the treatment of metastatic melanomas).50 This
study examined the melanoma histological sections to identify
clinical responsiveness to treatment. The PLS-DA discriminates
between responders and non-responders at a high level,
achieving some of the highest F1-Scores of the report.

Finally, both SVM and KNN methods of classification were
tested on gastric cancer tissue samples scanned using attenu-
ated total reflectance Fourier Transform Infrared (ATR-FTIR)
spectroscopy.51 Classes were split into normal and malignant
groups, with the samples being classified on a sample level.
While two classification methods are mentioned in the paper
only one set of prediction results are presented, with no indi-
cation as to whether these results belong to the SVM or KNN
method. The superior method of prediction cannot be deter-
mined. This is unfortunate as this study would have been able
to compare the classification methods directly, with the under-
lying data going through the same pre-processing steps.

Data acquisition and pre-processing techniques for the
classification of cancer in tissue

A major aspect of any quantitative study is the handling, struc-
ture, and pre-processing of the data being analysed.
Transformations applied to spectral datasets can have a pro-
found impact upon the performance of multivariate and ML
techniques applied to the data. In that regard, identifying and
highlighting the key sources of variability between the studies
in relation to their data handling techniques can assist in the
better understanding of each study’s model(s) performance. It
also assists in the development of guidelines and best prac-
tices for future research that can aid in the standardisation of
data handling techniques for future research. Beyond the com-
parison of study types, their ML models, and comparative F1-
Scores, key study information pertaining to their data and
handling is presented in Table 2. With key insight as to how
prior researchers have handled their data, a guideline of
important and optional pre-processing steps can be formu-
lated for use in future studies. The wavenumber ranges ana-
lysed is one of the first key sources of variance between the
studies. While FTIR spectrometers collect absorbance readings
across both the near and mid IR range, typically
900–3800 cm−1, many studies restrict their analyses to the
“fingerprint” region of 900–1800 as this complex region contains
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many of the absorbance bands key in identifying molecular
structures.13 This is key when trying to discriminate between
tissue constituents whose chemical structures are largely
similar.

Additional variability between studies can occur due to
differences in scan parameters in the choice of scan co-
additions and resolution. A higher number of scan coaddi-
tions provides better quality data, as it combines multiple
readings of the same region to provide an average, minimising
the signal to noise ratio of the data. Scan resolution impacts
the number of absorbance readings taken between the wave-
number range, for example a resolution of 4 cm−1 will result in
twice as many data points as 8 cm−1. While the quality of the
data is improved, each collection setting will impact the time
taken to acquire a spectral dataset, requiring a compromise if
time is a limiting factor. Across the studies, the number of co-
additions has ranged from 4 to 256, with scan resolution
ranged from 2–8 cm−1.

Quality testing is a key pre-processing step when preparing
data for classification. Confounding factors such as stray hair
or dust may be present within the sample scanned image,
alongside saturated spectra and generally unusable data that
all must be removed to improve the quality of the overall ana-
lyses. The quality testing across the studies differs, ranging
from visual removal of saturated spectra, to signal to noise
ratio considerations, even applications of thresholds to certain
absorbance bands/values such as the Amide I signal, removing
any spectra deemed to be abnormal.52,53 While most studies
employ at least one form of quality testing, there are still some
that do not. It may be argued that initial quality testing of data
is a fundamental pre-processing step that should be done in
all future studies.

Certain baseline distortions and scattering artefacts caused
by Mie scattering may also be treated for, prior to
analysis.27,54,55 Both baseline subtraction, linear or non-linear,
and resonant-Mie scattering (RMies) correction methods
correct for warped absorbance profiles without removing any
relevant chemical information. It is important to note that
RMies correction also applies baseline correction when used,
meaning both methods need not be applied. While both
methods improve the quality of the data, these pre-processing
steps are not always required. For example, the effect of con-
sistent baseline shifts can be nullified by converting data to
the second derivative, removing the need to conduct baseline
subtraction, and Mie scattering occurrence is improbable
within large sections of FFPE tissue that has not been
dewaxed. Although wax embedding reduces scattering arte-
facts, it does not eradicate it. While most of the studies have
either employed baseline subtraction or RMies correction,
there are still several studies that have not.

While the signal to noise ratio of the data can be improved
through certain collection criteria, noise within the datasets
can still be present and therefore treated. Noise reduction, also
referred to as smoothing, can be considered an optional treat-
ment step as high quality data would have little to no noise
present. Regardless, noise correction can be an important tool

to improve spectral data quality when users are unable to
commit to large acquisition timeframes. The main noise
reduction method used in the tabulated studies is Principal
Component Analysis (PCA) noise reduction.2 This method is
different from PCA dimensionality reduction, as the data
dimensions are not changed ref. The severity of the noise
reduction/smoothing is influenced by the number of com-
ponents that are selected. A reasonable number of com-
ponents are user defined and are chosen to ensure that the key
aspects of the data, which is assumed to be the chemical infor-
mation, is retained.

Normalisation of data is an integral step in spectral pre-pro-
cessing, providing a scale commonality between different spec-
tral datasets to ensure comparability between data. Beyond
accounting for differences in thickness across a sample, some
ML methods also require data to be normalised, as certain
methods require the data to be valued within a [0,1] range.
The three main forms of normalisation are vector normalisa-
tion, which converts each absorbance spectrum to a unit
vector (dividing the spectrum by its highest absorbance value),
min-max normalisation, which transfers all the minimum and
maximum values to 0 and 1 respectively. There is also feature
normalisation, which divides each spectrum based on a user
defined feature. Just over half of the studies tabulated apply
some form of normalisation technique. As this technique pro-
vides that commonality between samples, it is suggested that
all future studies apply some form of normalisation of data.
However, it is important to note that any discussions regarding
features of the data following normalisation must be done in
relative terms.

Data transformations to derivatives of the data have also
been used in the studies, with the second derivative being a
popular choice. Transformations of data to a derivative is an
alternative representation of the data. In layman terms, con-
verting data to the first derivative maps the rate of change of
the spectroscopic absorbance profiles across a wavenumber
range, while conversion to the second derivative maps the gra-
dient of the gradient of the underlying absorbance profile.
When converting data to the first derivative, feature maxi-
mums become zero intercepts. In the second derivative a
feature maximum will be negative, reflecting the concave down
form of the feature. Second derivative spectroscopy enhances
the separation of subtly differing spectra, reducing the
effective linewidth while simultaneously reducing contri-
butions from broad and structureless elements, allowing for
greater differentiation of tissue constituents and better per-
formance of multivariate and ML methods.56–58 Conversion to
the second derivative also negates any linear baseline shifts
within the data. Of the studies listed, three utilise the first
derivative and three use the second.

An alternative way to transform the data is to perform
dimensionality reduction techniques. This technique can be
applied in combination with derivative transformations. This
technique transforms data into a lower dimensional represen-
tation of that data, ideally retaining the most important
aspects of the original data. The most commonly used tech-
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nique is PCA dimensionality reduction, reducing the original
dataset to a user-specified set dimension. The theory implies
that the variance captured in the key initial components will
be those which separate the key tissue constituents most,
which may be true when analysing two distinctly different
samples such as cancerous tumours and healthy tissue.
However, this may not be the case, in practice, within tissue
samples that are mainly homogenous, where a lot of the main
variation within the dataset may not be attributable to the
miniscule differences that exist between the mainly similar
tissue constituents. For example, a small increase in an absor-
bance peak that denotes tyrosine protein kinase activity result-
ing from a survival response to tissue damage, is much
smaller in absolute terms than the difference in absorbance
peaks that reflect tissue thickness. Caution is advised when
using this method, as important chemical information can be
lost when reducing data dimensions. A secondary criticism of
the PCA technique is that it is a linear mapping of data, and
spectroscopic data reflecting tissue change are not necessarily
linear, requiring the utilisation of non-linear and more
complex methods such as kernel principal component analysis
to map the non-linearity using kernels, which no tabulated
study has done.59,60 Creating user specified metrics such as
key absorbance ratios is also a possibility, as one study con-
ducted,38 however, this requires extensive prior knowledge of
the datasets being analysed, which is not always the case in
practice.

With regards to the impact of pre-processing upon obtained
F1-Scores, direct comparison would require a study that builds
two identical classification methods trained on raw (unpro-
cessed) and pre-processed spectra respectively. The compari-
son could then provide F1-Scores to be directly compared.
However, given pre-processing of spectra is an integral step of
all studies utilising spectroscopic techniques, converting data
to a format that may best be discriminated by ML/multivariate
models, by implication pre-processing techniques will always
improve obtained F1-Scores.

2

Each study’s collection and ordering of pre-processing steps
are all selected relative to the study itself, meeting the require-
ments of each model and study objective. The order of these
steps will have a direct impact upon the study results. It is
clear from Table 2 that while there is no unanimous agree-
ment on any form of pre-processing protocol, there does
appear to be some trending across studies, even in the pres-
ence of already published pre-processing protocols.2 In con-
trast to a general protocol for biological samples, a data pre-
processing protocol for multivariate and ML classification
studies on tissues will be suggested in line with the trends cap-
tured in the tabulated studies. It is important that this
suggested protocol be considered alongside the aforemen-
tioned pre-processing protocol, to ensure full understanding
of the data handling options available to the user.

Data pre-processing protocol for tissue classification

An important note for this proposed workflow is that not all
steps are mandatory, however their order is important. In

example normalisation should never be implemented prior to
baseline correction or smoothing. Judgment must be exercised
for studies that do not conform to the tabulated studies ana-
lysed. These steps can be conducted irrespective of wavenum-
ber range(s) analysed.

1. Apply quality testing to the collected spectra. Researchers
should consider using either signal to noise or absorbance
thresholding to remove inappropriate data.

2. Researchers should conduct either baseline or scattering
correction depending on the conditions below:

(i) If the baseline shift appears consistent across spectra
and linear in nature, apply linear baseline subtraction through
interpolation of a straight line through key spectral points
(optional).

(ii) If the baseline shift appears consistent across spectra
but non-linear in nature, apply non-linear rubber band base-
line subtraction61,62 (optional).

(iii) If the baseline shifts appear warped and are inconsist-
ent across spectra, apply RMies scattering correction.27,54,55

The number of iterations required are dependent on the sever-
ity of scattering.

Steps i and ii are deemed optional as transformation of
data to the second derivative removes impact of any consistent
baseline shift.

3. Apply Eigenvalue decomposition techniques such as PCA
for noise reduction to further improve data quality.63,64 For
PCA noise reduction a large component number (∼50) is rec-
ommended to avoid removal of subtle absorbance peaks
(optional).

This step is optional and dependent on signal to noise ratio
of the spectra at this stage.

4. Perform vector normalisation of the data, feature normal-
isation and min-max normalisation are viable alternatives.

5. Transform data using Savitzky–Golay differentiation
(second derivative is recommended).65

Discussion

In applications of multivariate and ML techniques, interpret-
ations of the results presented by the comparative F1-Score
require consideration. A key aspect of any study is the framing
of the classification problem. The classification problems
addressed in the tabulated studies can be split into two key
groups: the number of classes, separated as two class or multi-
class, and the number of classification levels, split across
single and multi-level classification. Two-class classification is
concerned with discriminating between two groups of data
and is arguably the simplest classification problem for ML
application. Regarding cancer classification within tissue, the
two classes consist of a control set of healthy tissue and the
cancerous tissue. The high levels of performance metrics
reported for these two group classification problems are mis-
leading. This is due to the two groups’ absorbance profiles
being distinctly different, resulting in a very simple classifi-
cation problem for a machine learner.
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Multi-class classification is more complex, requiring mul-
tiple tissue constituents to be differentiated. The homogenous
nature of tissue samples would imply that a classification method
that can distinguish between the many different constituents of
tissue, as well as highlighting the cancerous regions and deter-
mining their grade, would be of much greater impact, given it is
a much more difficult endeavour, irrespective of whether it
obtains lower performance metrics. This type of classification can
be conducted at once with a single model, or a tiered set of
models that focus on separating specific groups. Having multiple
sets of classifiers with different targets is more desirable, as each
model can specialise in key spectral separations, improving the
overall performance. Großerueschkamp and colleagues applied
tiered classifications, separating healthy tissue from tumorous
tissue of pathological interest, followed by classifying these
tumours, and finally subtyping the lung adenocarcinoma.4 In
light of this complexity variance, F1-Scores must be considered on
a case-by-case basis when comparing studies, as the framing of
the classification problem could have profound impacts on the
final metric. To mitigate this limitation, the difficulty of the
classification problem should be highlighted where applicable,
with results reported in a way so that the relative complexity of
the approach can be deduced by the reader. This can be achieved
with confusion matrices, as the numbers and size of the matrices
are proportional to the classification complexity.

When selecting the best classification method each tech-
nique comes with it its own advantages and disadvantages,
and needs to be well understood before application. For
example, SVMs require more computational time for both
model training and prediction than an ensemble RF method
but are very good at finding high-dimensional hyperplanes for
class separation. Many of the papers, possibly in the interests
of length, do not articulate the influencers in the choice of
machine learners or the author’s process for method selection
and application. In addition to this, many studies do not
provide adequate discussion about the hyper-parameters used
in each of their methods, even when a selected method may
have multiple setups. For example, kernel choice is a major
decision criterion when applying a SVM classifier, however
there is very rarely a mention of what kernel was selected or why
the decision was made. The addition of model structure infor-
mation and model selection influences within future studies
would be a positive contribution to the research community,
improving the reproducibility and comparability of studies.
There is at least one instance of each reported method achieving
an F1-Score above 0.90, making it difficult to objectively rank the
techniques. For example, in studies involving breast tissue
samples, the RF method appears to be the best relative classi-
fier, however there are limited studies using alternative tech-
niques, so the statement cannot be made with confidence.
Additionally, the pre-processing steps applied to the data have
direct impact upon model performances. Given that there is no
concordance among the studies in this regard, directly compar-
ing the multivariate and ML methods becomes difficult.

As to the comparison of technique, both FTIR and QCL
techniques were employed in the collated studies, however it is

difficult to directly compare the two techniques in terms of the
F1-Score. Key differences between the two methods restrict
concise comments without first a larger discussion on the
differences inherent in the spectroscopic methods, such as the
impact of discrete wavenumber frequency choices or restricted
wavenumber range collection under the QCL method and how
these choices impact the F1-Score metric.2,10 In example, dis-
crete wavenumber selection may not be apt for tissue classifi-
cation studies without adequate knowledge of the key tissue
constituents, potentially resulting in ineffective classifications.
While difficult to address this issue through a meta-analysis,
the improved reporting standards recommended in this article
would assist in providing a better overview and in-depth ana-
lysis of the field.

All authors have the capacity to produce their performance
metrics to the same standard, which would allow for greater
levels of comparability across the research. Some studies do
not have access to fully labelled data, so performance metrics
of predictions on independent datasets may not be calculated,
however there will still be internal model metrics that can be
reported, given that the training datasets must have been
labelled. The importance of adequate reporting of results for
these classification techniques cannot be understated,
especially given the developing trend towards workflows that
give more weight to the outputs of the computational methods
within a medical context. While the F1-Score allowed for a new
comparison to be made between studies with varying reporting
of results, providing an additional representation of a tech-
nique’s ability to perform its function, it was not always poss-
ible to calculate this performance metric. If all tabulated
studies were consistent in their reporting standards, the calcu-
lation of this F1-Score would not be necessary as direct com-
parisons could have been made between the results.

The data collection, handling, and pre-processing steps
employed by each study are another key source of variability
and direct influencers of model performance. At the collection
level there exists a trade-off between the quality of the data
acquired and the time to completion for each collection.
Increasing the number of scan co-additions reduces the signal
to noise ratio of the acquired spectra through the power of
averaging, while better scan resolution increases the number
of absorbance readings taken across a specified range. While
the former decreases the impact of noise, the latter can
provide more defined absorbance peaks, capturing changes to
peak shape and position, possibly even breaking apart peaks
that would otherwise appear as a sole broad absorbance peak.
When considering the homogeneity of tissue samples, prefer-
ence may be given to better scan resolution to best capture the
slight changes in absorbance profiles, especially as there are
existing pre-processing steps to combat noise contributions.

In certain instances, the choice of wavenumber range(s) for
use can be restricted because of the scanning technique or
sample substrate employed. When unrestricted, the user is
free to target specific wavenumber ranges to best suit their
study. While the full IR wavenumber range has been used in
some studies, many elect to focus on the complex “fingerprint”
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region containing many of the absorbance bands key in identi-
fying molecular structures.13 Focussing on a specific wavenum-
ber range removes unnecessary data, decreases the compu-
tational complexity of applied techniques and increases the
effectiveness of multivariate and ML methods in discriminat-
ing between spectral profiles. Restricting the spectral range is
the first of many pre-processing steps available to users to
assist in classification problems. Additional pre-processing
steps can be conducted to combat issues such as baseline dis-
tortions and scattering artefacts, improvement of signal to
noise ratios through noise reduction, normalisation of data,
differentiation and dimensionality reduction of data.

To assist future researchers, a specific pre-processing protocol
is proposed for the classification of biological tissue samples
using ML methods. The protocol covers fundamental and
optional data transformations to improve both data quality and
overall classification performance. One form of data transform-
ation that is included in the tabulated studies, but not considered
for the protocol, is dimensionality reduction techniques. While
helpful in many other aspects of data analytics, the commonly
used PCA technique is inclined to ignore important chemical
information that, while important in discrimination, may not
capture enough variance to be captured as a key component.
While applying this technique upon two distinctly different tissue
samples such as healthy control and cancerous tumours may
produce good class separation across key components, the minis-
cule chemical differences that exists within homogenous tissue
samples may not be captured by this method.

Conclusions

The comparisons conducted in this study, where possible, con-
sisted of two main categories: the multivariate and ML classifi-
cation types employed on the data returned by FTIR spec-
troscopy of tissues, alongside the performance metrics
achieved and the key data attributes, handling, and pre-proces-
sing steps of each study. Both categories provided key insights
into the current practices employed in the research commu-
nity, while simultaneously highlighting the lack of concor-
dance across both categories. It is noted that the studies differ
in their techniques, from pre-processing steps to classification
technique, and the classification problem being addressed.
Classification model performances were compared through
the calculation of a directly comparable F1-Score, determined
through reported metrics of either sensitivity and specificity,
or confusion matrices. Data handling and pre-processing tech-
niques were also compared across the studies, resulting in the
development of a pre-processing protocol which can be uti-
lised by future researchers employing classification techniques
on biological tissue samples. In the literature examined, both
pixel level and tissue wide classification problems have been
addressed to varying levels of success, allowing for the dis-
crimination of both key tissue constituents and unhealthy
tissue regions of interest, with many of the studies originally
reporting high levels of performance metrics, while also

obtaining reasonably high F1-Scores. This highlights the
overall effectiveness of classification of tissue cancers through
the application of multivariate and ML techniques on FTIR
spectroscopy datasets. In conclusion, IR microscopy has been
developed to be a useful adjunct to histopathological diagnosis
of human cancer, particularly of the breast, colon, prostate,
urinary bladder, liver, lung, ovary, and skin. With early studies
focused on basic classification of healthy from cancerous
tissues, while recent work has further developed the methods
to classify cancerous grades, subtypes, and tissue variants. The
studies indicate that while the choice of ML techniques is not
consistent, with ensemble methods providing the best results
on average, the workflows are moving towards tiered modelling
approaches that capture tissue complexity.

In future it would be beneficial to the research community
for authors to present their results in a similar standard that
allows for the effective comparison and reproducibility of those
publications. This can be achieved by a mandatory minimum
reporting of classification results in a confusion matrix form,
with supplementary sensitivity and specificity metrics. These
standards would eliminate the need to produce the F1-Score.
Additionally, further levels of research concordance and compar-
ability can be achieved through the following of the proposed
pre-processing protocol, establishing a set standard for the type
of data being analysed by multivariate and ML techniques.
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