Issue 4, 2021

Preparation of responsive “dual-lock” nanoparticles and their application in collaborative therapy based on CuS coordination

Abstract

It is difficult for drug delivery systems to release drugs as expected, often leading to undesired side effects. To solve this problem, a CuS@MSN/DOX@MnO2@membrane (CMDMm) was reasonably designed. It was introduced to release the drug by a double response, similar to using two keys to open two locks at the same time for one door. CuS@MSN was used as a photothermal therapy (PTT) material and carrier, and then the surface of CuS@MSN/DOX was sealed by MnO2 to prevent drug release in advance. MnO2 could be reduced and degraded in a tumor microenvironment. It was applied in MR imaging due to the T1 magnetism of Mn2+ following the reduction of MnO2. Finally, the 4T1 cell membrane was extracted and coated onto the surface of CuS@MSN/DOX@MnO2, which served as a target for 4T1 tumor cells. A noteworthy phenomenon was that the fluorescence of DOX was quenched by the coordination between DOX and CuS, and this greatly improved the interaction between DOX and CuS@MSN. However, the coordination was weakened when DOX was protonated in a tumor microenvironment (∼pH 5.0), leading to the release of DOX and fluorescence recovery. The drug release experiments showed that the release efficiency was higher at pH 5.0 with 10 mmol L−1 GSH. Through in vitro laser confocal imaging, it was successfully observed that DOX was reliably released in specific tumor cells according to the fluorescence recovery, and that there was no leakage in other cells. In short, effective double response drug release was successfully confirmed.

Graphical abstract: Preparation of responsive “dual-lock” nanoparticles and their application in collaborative therapy based on CuS coordination

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2020
Accepted
16 Dec 2020
First published
16 Dec 2020

J. Mater. Chem. B, 2021,9, 1049-1058

Preparation of responsive “dual-lock” nanoparticles and their application in collaborative therapy based on CuS coordination

C. Jia, M. Zhang, X. He, W. Li and Y. Zhang, J. Mater. Chem. B, 2021, 9, 1049 DOI: 10.1039/D0TB02490B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements