Issue 16, 2021

The lithium metal anode in Li–S batteries: challenges and recent progress

Abstract

As strenuous research works approach the theoretical limits of the lithium-ion battery, the need to exploit more sustainable chemistries has emerged as a primary concern. The development of the lithium–sulfur (Li–S) battery offers an energy density of 2567 W h kg−1, reflecting an up to three to fivefold enhancement against the state-of-the-art Li-ion device. Solving the critical degradation of the metal anode and suppressing correlated side reactions in the Li–S cell represent, however, pivotal steps towards commercial consideration. In light of the unique Li–S electrochemistry, we examine herein the technical challenges of the lithium metal anode, including the dendritic lithium nucleation and growth during Li plating, and the stabilization of the solid electrolyte interphase (SEI). We revisit key contributions to establish a guideline of crucial factors determining the stability of the anode and its correlation with the electrolyte selection, electrode current density, and the effect of the shuttle of polysulfide intermediate species. Most importantly, our review delivers a comprehensive comparison of introduced strategies for the metal surface protection (including electrolyte-modification-based approaches and metal surface coating), along with a theoretical understanding and analysis of the underlying methodologies. This review sheds light on future opportunities towards a practical application of Li–S batteries, while stimulating progress in the exploitation of lithium metal anodes in parallel technologies in the development of energy storage for a sustainable future (266 citations).

Graphical abstract: The lithium metal anode in Li–S batteries: challenges and recent progress

Article information

Article type
Review Article
Submitted
05 Feb 2021
Accepted
29 Mar 2021
First published
13 Apr 2021

J. Mater. Chem. A, 2021,9, 10012-10038

The lithium metal anode in Li–S batteries: challenges and recent progress

H. Hong, N. A. R. Che Mohamad, K. Chae, F. Marques Mota and D. H. Kim, J. Mater. Chem. A, 2021, 9, 10012 DOI: 10.1039/D1TA01091C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements