Issue 1, 2021

Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells

Abstract

The power conversion efficiency of perovskite solar cells is approaching the Shockley–Queisser limit, and therefore this technology is next to the commercialization stage. Inexpensive and stable hole transporting materials are highly desirable for the successful scale-up. Most high performing devices generally employ expensive hole conductors that are synthesized via cross-coupling reactions which require expensive catalysts, inert reaction conditions and time-consuming sophisticated product purification. In a quest to employ cost-effective chemistry to combine the building blocks, we explore enamine-based small molecules that can be synthesized in a simple condensation reaction from commercially available materials leading to an estimated material cost of a few euros per gram. The synthesized fluorene-based enamines exhibit a very high hole mobility up to 3.3 × 10−4 cm2 V−1 s−1 and enable the fabrication of perovskite solar cells with a maximum power conversion efficiency of 19.3% in a doped configuration and 17.1% without doping. In addition, both PSC systems demonstrate superior long-term stability compared to spiro-OMeTAD. This work shows that hole transporting materials prepared via a simple condensation protocol have the potential to compete in terms of performance with materials obtained via expensive cross-coupling methods at a fraction of their cost and deliver exceptional stability of the final device. This work provides a design strategy for the further development of novel, low-cost semiconductors.

Graphical abstract: Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2020
Accepted
21 Nov 2020
First published
23 Nov 2020

J. Mater. Chem. A, 2021,9, 301-309

Fluorene-based enamines as low-cost and dopant-free hole transporting materials for high performance and stable perovskite solar cells

S. Daskeviciute, C. Momblona, K. Rakstys, A. A. Sutanto, M. Daskeviciene, V. Jankauskas, A. Gruodis, G. Bubniene, V. Getautis and M. K. Nazeeruddin, J. Mater. Chem. A, 2021, 9, 301 DOI: 10.1039/D0TA08452B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements