A universal screening strategy for the accelerated design of superior oxygen evolution/reduction electrocatalysts†
Abstract
Despite advanced computational methods, it is not practical to utilize high-throughput computational screening for a large number of candidates for multi-step reactions due to intercorrelation between reaction intermediates. However, we have devised a universal computational screening strategy that can accelerate the prediction of the theoretical overpotential (ηDFT) for the Oxygen Evolution/Reduction Reaction (OER/ORR) by using only the adsorption free energy of O*. Our accelerated screening strategy can effectively reduce the computing time by skipping the costly calculations of adsorption free energies of OH* and OOH*. Besides, the efficiency of the accelerated screening strategy was verified using 1008 combinations of single-atom-anchored transition metal dichalcogenides. The given candidate materials are rapidly screened using our strategy and finally 32 promising catalysts are found which have a lower ηDFT than state-of-the-art commercial IrO2 for the OER and Pt for the ORR. Our screening strategy that uses a sequential process can narrow down the candidate space, and enables practical high-throughput computational screening of oxygen-involved reactions even for a large number of candidates.