Cationic polymeric template-mediated preparation of silica nanocomposites
Abstract
Biosilicification allows the formation of complex and delicate biogenic silica in near-neutral solutions under ambient conditions. Studies have revealed that, during biosilicification, basic amino acid residues and long-chain polyamines of organic substrates interact electrostatically with negatively charged silicate precursors in solution, catalyzing the polycondensation of silicic acid and accelerating the formation of silica. This mechanism has inspired researchers to explore polymers bearing chemical similarity with these organic matrices as cationic templates for biomimetic silicification. Such templates can be classified into two general categories based on the physical forms applied. One is a solution of water-soluble cationic polymers, either natural or synthetic, used as is for silicification. The other category includes various microscopically shaped entities made of cationic polymer-containing molecules, in the form of micelles, vesicles, crystalline aggregates, latex particles, and microgels. Combined with controlled polymerization and other techniques, these preorganized templates can be tailor designed in terms of sizes and morphologies to allow further expansion of properties and functions. In this review, notable research progress for both categories of silicification under biomimetic conditions is discussed. With the merits of silica and cationic polymers seamlessly integrated, the potential of such versatile nanocomposites in biomedical as well as energy and environmental applications is also briefly highlighted.